Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and silk-collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed silk fibroin mesh, silk-collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of rabbits were cultured for a homogenous population and seeded on the silk-collagen scaffold. In the scaffold and BMSC (S/C) group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S) group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4 and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining (IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft-bone interface, HE, Russell-Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM) was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C expression in the S/C group was considerably higher than that in the S group (4 w, < 0.01; 16 w, < 0.01). Furthermore, bone integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), = 0.0169, bone mineral density (BMD), = 0.0001; 16 w, BV/TV, = 0.1233, BMD, = 0.0494). These results indicate that BMSCs promote ligament regeneration in the knee cavity and bone integration at the graft-bone interface. Silk-collagen scaffolds and BMSCs will likely be combined for clinical practice in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088362PMC
http://dx.doi.org/10.1155/2021/6697969DOI Listing

Publication Analysis

Top Keywords

ligament regeneration
16
s/c group
16
bone integration
16
silk-collagen scaffold
12
bone
10
bone mesenchymal
8
mesenchymal stem
8
stem cells
8
anterior cruciate
8
cruciate ligament
8

Similar Publications

Asiatic acid methyl ester, a new asiaticoside derivative, induces osteogenic differentiation of hPDLCs.

Arch Oral Biol

January 2025

Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellent in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, Thailand.

Objective: Asiaticoside has the capacity to induce osteogenic differentiation of human periodontal ligament cells (hPDLCs) through Wnt (Wingless-related integration site) signaling. A modified chemical structure (by removing glycoside side chain), referred to as asiatic acid methyl ester (AA1), has been constructed and evaluated for its capacity to induce osteogenic differentiation.

Design: hPDLCs viability was determined by MTT assay.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Introduction: Sports injuries involving bi-articular muscles like the hip flexors, hamstrings, quadriceps, and gastrocnemius significantly affect athletes' performance and quality of life. Comprehensive rehabilitation is crucial for a pain-free return to play (RTP). Over the past 15 years, platelet-rich plasma (PRP) has emerged for its potential in tissue regeneration.

View Article and Find Full Text PDF

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!