Background: Ketamine has been shown to possess lasting antidepressant properties. However, studies of the mechanisms involved in its effects on poststroke depression are nonexistent.

Methods: To investigate these mechanisms, Sprague-Dawley rats were treated with a single local dose of ketamine after middle cerebral artery occlusion and chronic unpredicted mild stress. The effects on the hippocampal dentate gyrus were analyzed through assessment of the N-methyl-D-aspartate receptor/calcium/calmodulin-dependent protein kinase II (NMDAR/CaMKII) pathway, synaptic plasticity, and behavioral tests.

Results: Ketamine administration rapidly exerted significant and lasting improvements of depressive symptoms. The biochemical analysis showed rapid, selective upregulation and downregulation of the NMDAR2- and NMDAR2- subtypes as well as their downstream signaling proteins -CaMKII and -phosphorylation in the dentate gyrus, respectively. Furthermore, the colocalization analysis indicated a significant and selectively increased conjunction of -CaMKII and postsynaptic density protein 95 (PSD95) coupled with a notable decrease in NMDAR2- association with PSD95 after ketamine treatment. These changes translated into significant and extended synaptic plasticity in the dentate gyrus.

Conclusions: These findings not only suggest that ketamine represents a viable candidate for the treatment of poststroke depression but also that ketamine's lasting antidepressant effects might be achieved through modulation of NMDAR/CaMKII-induced synaptic plasticity in key brain regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088363PMC
http://dx.doi.org/10.1155/2021/6635084DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
16
lasting antidepressant
12
dentate gyrus
12
antidepressant effects
8
hippocampal dentate
8
poststroke depression
8
ketamine
6
ketamine induces
4
lasting
4
induces lasting
4

Similar Publications

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.

View Article and Find Full Text PDF

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

Involvement of ROS signal in aging and regulation of brain functions.

J Physiol Sci

December 2024

Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan. Electronic address:

Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function.

View Article and Find Full Text PDF

Colistin treatment causes neuronal loss and cognitive impairment via ros accumulation and neuronal plasticity alterations.

Biomed Pharmacother

January 2025

Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Av. Josep Laporte, 2, Reus 43204, Spain. Electronic address:

The rise of antimicrobial resistance has made necessary the increase of the antibacterial arsenal against multidrug-resistant bacteria. In this context, colistin has re-emerged as a first-line antibiotic in critical situations despite its nephro- and neuro- toxicity at peripheral level. However, the mechanism underlying its toxicity remains unknown, particularly in relation to the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!