HER2 in situ hybridization test in breast cancer: quantifying margins of error and genetic heterogeneity.

Mod Pathol

Department of Pathology, Ipatimup Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.

Published: August 2021

The aim of the present study was to evaluate the effect of counting increasing number of invasive cancer cells in the result of the HER2 in situ hybridization (ISH) test in breast cancer as well as to compare two different approaches of measuring genomic heterogeneity (single cell and population based). A cohort of 100 consecutive breast cancer cases (primary and metastatic) were evaluated for HER2 gene amplification with bright-field ISH. The evaluation of the samples included scoring 20 nuclei, in five different areas, measuring the margins of error for each case. Genomic heterogeneity (GH) was defined by the 2018 ASCO/CAP guideline as a discrete population of tumor cells with HER2 amplification. We also evaluated GH as single tumor cells with HER2 amplification. The stabilization of the coefficient of variation of HER2/CEP17 ratio requires about 60 invasive cancer cells. The average margin of error of HER2/CEP17 ratio and of HER2 copy number was 0.40 and 0.53, respectively, when counting 20 cells, decreasing to 0.20 and 0.26 when counting 100 cells. Population GH was observed in 1% of the cases, while single cell GH was observed in 27% of the cases, reaching its maximum value in cases near the thresholds of positivity. Therefore, margins of error in HER2 ISH test are high, and the minimal cell number recommended in current guidelines should be raised to at least 60 cells. Population GH is a rare event and single cell GH is maximal in cases near the thresholds.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41379-021-00813-xDOI Listing

Publication Analysis

Top Keywords

breast cancer
12
margins error
12
single cell
12
her2 situ
8
situ hybridization
8
test breast
8
invasive cancer
8
cancer cells
8
ish test
8
genomic heterogeneity
8

Similar Publications

Unlabelled: Patients with breast cancer (BC) are at high risk of cardiotoxicity (CT) due to combination of anticancer treatment.Cardio-vascular (СV) complications lead to the delay or discontinuation of anticancer therapy, which significantlyworsens the prognosis. Anthracyclines (AC) are the main drugs included in most anticancer treatment regimens.

View Article and Find Full Text PDF

Unlabelled: Problem of the causal relationship of disease that became the reason of death with the effect of ionizing radiation and due to harmful influence of the Chornobyl Catastrophe during performance of professional, military or official duties and / or living on radiation-contaminated areas, additional exposure not through their own fault but due to a radiation accident, caused the development of a special form of medical expertise as part of the of medical social protection system for suffered contingents in the remote postaccidental period.

Objective: To study and characterize the structure of the survivor categories (clean-up workers and victims) of the Chernobyl Catastrophe in the remote post-accident period (2013-2024) regarding the causal relationship of disease that became the reason of death with the effect of ionizing radiation and due to harmful influence of the Chornobyl Catastrophe based on the materials of expert cases of the Central Interdepartmental Expert Commission of the Ministry of Health of Ukraine (CIEC).

Material And Methods: The work was performed in the design of a retrospective study that based on analysis of the structure of all categories of Chornobyl NPP accident (ChNPP) survivors during 2008-2024 years and studying of 58,137 medical expert cases, including 19,524 postmortem cases, which were considered by CIEC during 2013-2023 to establish a causal relationship between the disease and influence of radiation exposure and other harmful factors and conditions during ChNPP accident.

View Article and Find Full Text PDF

Objective: analysis of molecular genetic phenotypes, their proliferative activity, degree of spread and differentiation of tumors in breast cancer patients affected by the accident at the Chornobyl Nuclear Power Plant.

Materials And Methods: 96 breast cancer patients who were exposed to ionizing radiation as a result of the accident at the Chornobyl Nuclear Power Plant were examined. Clinical, radiological, instrumental, morphological,immunohistochemical research methods were used.

View Article and Find Full Text PDF

Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study.

Int J Surg

October 2024

Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement.

Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a complex and diverse group of malignancies. Invasive ductal carcinoma (IDC) is the predominant pathological subtype and is closely linked to the ominous potential for distant metastasis, a pivotal factor that significantly influences patient outcomes. In light of these considerations, the present study was conceived with the objective of developing a nomogram model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!