AI Article Synopsis

  • The study investigates factors influencing stroke patient outcomes to create a predictive model for mortality and morbidity using machine learning.
  • The analysis included 6,022 patients, focusing on variables like NIHSS and temperature to evaluate results for different patient groups (ischemic stroke, intracerebral hemorrhage).
  • The findings indicate that while the model is effective for predicting mortality in ischemic stroke patients, it faces challenges with intracerebral hemorrhage predictions, highlighting significant statistical differences between these groups.

Article Abstract

We research into the clinical, biochemical and neuroimaging factors associated with the outcome of stroke patients to generate a predictive model using machine learning techniques for prediction of mortality and morbidity 3-months after admission. The dataset consisted of patients with ischemic stroke (IS) and non-traumatic intracerebral hemorrhage (ICH) admitted to Stroke Unit of a European Tertiary Hospital prospectively registered. We identified the main variables for machine learning Random Forest (RF), generating a predictive model that can estimate patient mortality/morbidity according to the following groups: (1) IS + ICH, (2) IS, and (3) ICH. A total of 6022 patients were included: 4922 (mean age 71.9 ± 13.8 years) with IS and 1100 (mean age 73.3 ± 13.1 years) with ICH. NIHSS at 24, 48 h and axillary temperature at admission were the most important variables to consider for evolution of patients at 3-months. IS + ICH group was the most stable for mortality prediction [0.904 ± 0.025 of area under the receiver operating characteristics curve (AUC)]. IS group presented similar results, although variability between experiments was slightly higher (0.909 ± 0.032 of AUC). ICH group was the one in which RF had more problems to make adequate predictions (0.9837 vs. 0.7104 of AUC). There were no major differences between IS and IS + ICH groups according to morbidity prediction (0.738 and 0.755 of AUC) but, after checking normality with a Shapiro Wilk test with the null hypothesis that the data follow a normal distribution, it was rejected with W = 0.93546 (p-value < 2.2e-16). Conditions required for a parametric test do not hold, and we performed a paired Wilcoxon Test assuming the null hypothesis that all the groups have the same performance. The null hypothesis was rejected with a value < 2.2e-16, so there are statistical differences between IS and ICH groups. In conclusion, machine learning algorithms RF can be effectively used in stroke patients for long-term outcome prediction of mortality and morbidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115135PMC
http://dx.doi.org/10.1038/s41598-021-89434-7DOI Listing

Publication Analysis

Top Keywords

predictive model
8
machine learning
8
random forest-based
4
prediction
4
forest-based prediction
4
stroke
4
prediction stroke
4
stroke outcome
4
outcome clinical
4
clinical biochemical
4

Similar Publications

Objective: This ancillary study's purpose is to describe the relationship between dose of treatment and body mass index (BMI) outcomes in a tele-behavioral health program delivered in the IDeA States Pediatric Clinical Trials Network to children and their families living in rural communities.

Methods: Participants randomized to the intervention were able to receive 26 contact hours (15 hr of group sessions and 11 hr of individual sessions) of material focused on nutrition, physical activity, and behavioral caregiver training delivered via interactive televideo. Dose of the intervention received by child/caregiver dyads (n = 52) from rural areas was measured as contact hours.

View Article and Find Full Text PDF

Although radiotherapy techniques are the primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity, and side effect. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on features extracted from pre-treatment imaging data. This study aims to compare different models in predicting radiation-induced xerostomia and sticky saliva in both early and late stage of HNC patients using CT and MRI image features along with demographics and dosimetric information.

View Article and Find Full Text PDF

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!