Real-world rogue wave probabilities.

Sci Rep

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Published: May 2021

Rogue waves are dangerous ocean waves at least twice as high as the surrounding waves. Despite an abundance of studies conducting simulations or wave tank experiments, there is so far no reliable forecast for them. In this study, we use data mining and interpretable machine learning to analyze large amounts of observational data instead (more than 1 billion waves). This reveals how rogue wave occurrence depends on the sea state. We find that traditionally favored parameters such as surface elevation kurtosis, steepness, and Benjamin-Feir index are weak predictors for real-world rogue wave risk. In the studied regime, kurtosis is only informative within a single wave group, and is not useful for forecasting. Instead, crest-trough correlation is the dominating parameter in all studied conditions, water depths, and locations, explaining about a factor of 10 in rogue wave risk variation. For rogue crests, where bandwidth effects are unimportant, we find that skewness, steepness, and Ursell number are the strongest predictors, in line with second-order theory. Our results suggest that linear superposition in bandwidth-limited seas is the main pathway to "everyday" rogue waves, with nonlinear contributions providing a minor correction. This casts some doubt whether the common rogue wave definition as any wave exceeding a certain height threshold is meaningful in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115049PMC
http://dx.doi.org/10.1038/s41598-021-89359-1DOI Listing

Publication Analysis

Top Keywords

rogue wave
20
real-world rogue
8
wave
8
rogue waves
8
wave risk
8
rogue
7
waves
5
wave probabilities
4
probabilities rogue
4
waves dangerous
4

Similar Publications

Transcranial magnetic stimulation (TMS) is a non-invasive, FDA-cleared treatment for neuropsychiatric disorders with broad potential for new applications, but the neural circuits that are engaged during TMS are still poorly understood. Recordings of neural activity from the corticospinal tract provide a direct readout of the response of motor cortex to TMS, and therefore a new opportunity to model neural circuit dynamics. The study goal was to use epidural recordings from the cervical spine of human subjects to develop a computational model of a motor cortical macrocolumn through which the mechanisms underlying the response to TMS, including direct and indirect waves, could be investigated.

View Article and Find Full Text PDF

In this paper, we investigate the new generalized stochastic fractional potential-Korteweg-de Vries equation, which describes nonlinear optical solitons and photon propagation in circuits and multicomponent plasmas. Inspired by Kolmogorov-Arnold network and our earlier work, we enhance the improved bilinear neural network method by using a large number of activation functions instead of neurons. This method incorporates the concept of simulating more complicated activation functions with fewer parameters, with more diverse activation functions to generate more complex and rare analytical solutions.

View Article and Find Full Text PDF
Article Synopsis
  • - This work explores a rogue wave solution strategy based on the Hirota bilinear hypothesis to develop various soliton wave solutions for the generalized Hirota-Satsuma-Ito condition.
  • - The study examines multiple types of soliton waves, including first to fourth-order waves, and analyzes properties related to lump solutions and the Hessian lattice.
  • - Results are validated through simulations that produce 3D, density, and 2D graphs, suggesting new insights into traveling wave theory.
View Article and Find Full Text PDF
Article Synopsis
  • This paper explores the properties of modulational instability (MI) and rogue waves (RWs) using generalized fractional nonlinear Schrödinger (FNLS) equations with rational potentials, focusing on the relationship between wavenumber and instability growth rates.
  • The study confirms through numerical simulations that MI occurs in focusing conditions and reveals how certain time-dependent potentials lead to controllable RWs in both cubic and quintic FNLS equations.
  • Additionally, it investigates the generation of higher-order RWs and identifies the conditions for their emergence, providing insights into the interaction between system parameters and potentials, which could inform future nonlinear wave research.
View Article and Find Full Text PDF

Hydrodynamic modulation instability triggered by a two-wave system.

Chaos

October 2024

Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan.

Article Synopsis
  • Modulation instability (MI) causes regular nonlinear wave trains to break down, potentially resulting in localized phenomena like rogue waves across various nonlinear dispersive media, including hydrodynamics and optics.
  • The classical MI dynamics can start with small-amplitude sidebands around a main wave peak, often visualized as a three-wave interaction setup in experiments, but more complex patterns can emerge through breather solutions of the nonlinear Schrödinger equation (NLSE).
  • This study explores MI in deep-water surface gravity waves, demonstrating that it can be initiated by just a single unstable sideband, yielding experimental results that align closely with nonlinear simulations, while also indicating shifts in focusing cycle behavior observed in longer-term wave evolution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!