Background: Conventional type 1 dendritic cells (cDC1s) are central to antitumor immunity and their presence in the tumor microenvironment associates with improved outcomes in patients with cancer. DNGR-1 (CLEC9A) is a dead cell-sensing receptor highly restricted to cDC1s. DNGR-1 has been involved in both cross-presentation of dead cell-associated antigens and processes of disease tolerance, but its role in antitumor immunity has not been clarified yet.

Methods: B16 and MC38 tumor cell lines were inoculated subcutaneously into wild-type (WT) and DNGR-1-deficient mice. To overexpress Flt3L systemically, we performed gene therapy through the hydrodynamic injection of an Flt3L-encoding plasmid. To characterize the immune response, we performed flow cytometry and RNA-Seq of tumor-infiltrating cDC1s.

Results: Here, we found that cross-presentation of tumor antigens in the steady state was DNGR-1-independent. However, on Flt3L systemic overexpression, tumor growth was delayed in DNGR-1-deficient mice compared with WT mice. Of note, this protection was recapitulated by anti-DNGR-1-blocking antibodies in mice following gene therapy. This improved antitumor immunity was associated with -dependent enhanced accumulation of CD8 T cells and cDC1s within tumors. Mechanistically, the deficiency in DNGR-1 boosted an Flt3L-induced specific inflammatory gene signature in cDC1s, including expression. Indeed, the increased infiltration of cDC1s within tumors and their protective effect rely on CCL5/CCR5 chemoattraction. Moreover, and or gene expression signatures correlate with an enhanced cDC1 signature and a favorable overall survival in patients with cancer. Notably, cyclophosphamide elevated serum Flt3L levels and, in combination with the absence of DNGR-1, synergized against tumor growth.

Conclusion: DNGR-1 limits the accumulation of tumor-infiltrating cDC1s promoted by Flt3L. Thus, DNGR-1 blockade may improve antitumor immunity in tumor therapy settings associated to high Flt3L expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118081PMC
http://dx.doi.org/10.1136/jitc-2020-002054DOI Listing

Publication Analysis

Top Keywords

antitumor immunity
20
dngr-1 limits
8
dendritic cells
8
cells cdc1s
8
patients cancer
8
dngr-1-deficient mice
8
gene therapy
8
cdc1s tumors
8
dngr-1
7
cdc1s
6

Similar Publications

Radiofrequency ablation combined with immunotherapy to treat hepatocellular carcinoma: a comprehensive review.

BMC Surg

January 2025

General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Background And Aim: Hepatocellular carcinoma (HCC) is a highly immunogenic tumor and the third leading cause of cancer-related deaths worldwide with an increasing incidence. Therefore, the combination of immunotherapy with other approaches, such as anti-angiogenic agents and local area therapy, has become a new strategy for HCC treatment.

Methods: We searched PubMed and Web of Science and extracted publications relating to the radiofrequency ablation (RFA) and immunotherapy.

View Article and Find Full Text PDF

The lymphatic system plays complex, often contradictory, roles in many cancers, including melanoma; these roles include contributions to tumor cell metastasis and immunosuppression in the tumor microenvironment as well as generation of antitumor immunity. Advancing our understanding of lymphatic vessel involvement in regulating tumor growth and immune response may provide new therapeutic targets or treatment plans to enhance the efficacy of existing therapies. We utilized a syngeneic murine melanoma model in which we surgically disrupted the lymphatic vessel network draining from the tumor to the tumor-draining lymph node (TDLN) while leaving the TDLN intact.

View Article and Find Full Text PDF

Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4.

View Article and Find Full Text PDF

Combined delivery of IL12 and an IL18 mutant without IL18BP-binding activity by an adenoviral vector enhances tumor specific immunity.

Sci Rep

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.

Cytokines play pivotal roles in anticancer immune response. We previously reported that adenovirus armed with an IL18 variant (DR18) that overcomes IL18BP neutralizing effect displayed powerful therapeutic effects in local and distant tumors when delivered intratumorally. Here, we tested a combined delivery of IL12 and DR18 in tumor models since IL12 and IL18 are known to act synergistically in potentiating IFNγ production and antitumor immunity.

View Article and Find Full Text PDF

Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!