A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation. | LitMetric

Alexandrium catenella (A. catenella) is a notorious algal species known to cause paralytic shellfish poisoning (PSP) in Korean coastal waters. There have been numerous studies on its temporal and spatial blooms in Korea. However, its bloom dynamics have not been fully understood because of the complexity in physical, chemical, and biological environments. This study aims to identify the factors that influence A. catenella blooms by applying a numerical model and machine learning. Intensive monitoring of A. catenella was conducted to investigate temporal variations in its population and its spatial distribution in the area with frequent occurrences of PSP bloom initiation. Moreover, a numerical model was built to analyze the ocean physical factors related to the bloom of A. catenella. Based on the information obtained from the monitored and simulated results, the decision tree (DT) method was applied to identify factors that caused the bloom. The outbreak of A. catenella was observed in the eastern coastal water of Geoje Island in 2017, recording a peak density of 4 × 10 (cell L). Retention time and particle scattering demonstrated that the physical force in 2017 was weaker than that in 2018, as shown by the smaller effects of advection and dispersion in 2017. The decision tree model showed that (1) water temperature below 17.21 °C was ideal for the growth of A. catenella, (2) phosphate influenced the growth of the species, and (3) cell density was accelerated with increasing retention time. The results from DT can contribute to the prediction of A. catenella blooms by determining the conditions that cause bloom initiation. Further, they can be used as a practical approach for mitigating HABs. Thus, machine learning and numerical simulation in this study can be a potential approach for effectively managing the bloom of A. catenella.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2021.102007DOI Listing

Publication Analysis

Top Keywords

machine learning
12
catenella
10
learning numerical
8
numerical simulation
8
identify factors
8
catenella blooms
8
numerical model
8
bloom initiation
8
bloom catenella
8
decision tree
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!