The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. Herein, we investigate physiological differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and reduced thiol content of the proteome. We demonstrate that gene and protein expression of the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (Dde) and monogalactosyldiacylglycerol (MGDG) synthase are not significantly different in the two cultures. Using redox proteomics, we report a significantly higher reduced cysteine content in the low toxin proteome, including plastid localized thioredoxin reductase (Trx) which can result in inactivation of Dde and activation of MGDG synthase. We also report significant differences in the lipidomes of KbHT and KbLT with respect to MGDG, which facilitates the xanthophyll cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246377 | PMC |
http://dx.doi.org/10.1016/j.hal.2021.102006 | DOI Listing |
J Plant Res
January 2025
Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
Since photosynthesis is highly sensitive to salinity stress, remote sensing of photosynthetic status is useful for detecting salinity stress during the selection and breeding of salinity-tolerant plants. To do so, photochemical reflectance index (PRI) is a potential measure to detect conversion of the xanthophyll cycle in photosystem II. Raphanus sativus var.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.
View Article and Find Full Text PDFJ Plant Res
December 2024
Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S.
View Article and Find Full Text PDFBioresour Technol
February 2025
Department of Chemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, Lyngby 2800, Denmark.
Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated.
View Article and Find Full Text PDFJ Oral Pathol Med
January 2025
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The inactivation of tumor suppressor genes (TSGs) caused by abnormal DNA methylation is confirmed to be widely present in oral potential malignant diseases (OPMDs). Carotenoids like lycopene and astaxanthin can regulate DNA methylation and exert anticancer effects. Therapeutic effect of astaxanthin in OPMDs and oral squamous cell carcinoma (OSCC) models is confirmed, but the relationship between the anti-cancer ability of astaxanthin and its DNA methylation regulation ability remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!