Due to anthropogenic activities, associated with climate change, many freshwater ecosystems are expected to experience an increase in salinity. This phenomenon is predicted to favor the development and expansion of freshwater cyanobacteria towards brackish waters due to their transfer along the estuarine freshwater-marine continuum. Since freshwater cyanobacteria are known to produce toxins, this represents a serious threat for animal and human health. Saxitoxins (STXs) are classified among the most powerful cyanotoxins. It becomes thus critical to evaluate the capacity of cyanobacteria producing STXs to face variations in salinity and to better understand the physiological consequences of sodium chloride (NaCl) exposure, in particular on their toxicity. Laboratory experiments were conducted on three filamentous cyanobacteria species isolated from brackish (Dolichospermum sp.) and fresh waters (Aphanizomenon gracile and Cylindrospermopsis raciborskii) to determine how salinity variations affect their growth, photosynthetic activity, pigment composition, production of reactive oxygen species (ROS), synthesis of compatible solutes and STXs intracellular quotas. Salinity tolerance was found to be species-specific. Dolichospermum sp. was more resistant to salinity variations than A. gracile and C. raciborskii. NaCl variations reduced growth in all species. In A. gracile, carotenoids content was dose-dependently reduced by NaCl. By contrast, in C. raciborskii and Dolichospermum sp., variations in carotenoids content did not show obvious relationships with NaCl concentration. While in Dolichospermum sp. phycocyanin and phycoerythrin increased within the first 24 h exposure to NaCl, in both A. gracile and C. raciborskii, these pigments decreased proportionally to NaCl concentration. Low changes in salinity did not impact STXs production in A. gracile and C. raciborskii while higher increase in salinity could modify the toxin profile and content of C. raciborskii (intracellular STX decreased while dc-GTX2 increased). In estuaries, A. gracile and C. raciborskii would not be able to survive beyond the oligohaline area (i.e. salinity > 5). Conversely, in part due to its ability to accumulate compatible solutes, Dolichospermum sp. has the potential to face consequent salinity variations and to survive in the polyhaline area (at least up to salinity = 24).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2021.102028 | DOI Listing |
Environ Sci Pollut Res Int
March 2022
ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil.
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017.
View Article and Find Full Text PDFHarmful Algae
March 2021
IFREMER-Phycotoxins Laboratory, F-44311 Nantes, France.
Due to anthropogenic activities, associated with climate change, many freshwater ecosystems are expected to experience an increase in salinity. This phenomenon is predicted to favor the development and expansion of freshwater cyanobacteria towards brackish waters due to their transfer along the estuarine freshwater-marine continuum. Since freshwater cyanobacteria are known to produce toxins, this represents a serious threat for animal and human health.
View Article and Find Full Text PDFWater Res
April 2021
Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany. Electronic address:
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts.
View Article and Find Full Text PDFToxins (Basel)
February 2021
Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
In the last decade, it has become evident that complex mixtures of cyanobacterial bioactive substances, simultaneously present in blooms, often exert adverse effects that are different from those of pure cyanotoxins, and awareness has been raised on the importance of studying complex mixtures and chemical interactions. We aimed to investigate cytotoxic and genotoxic effects of complex extracts from laboratory cultures of cyanobacterial species from different orders (, . ) and algae (), and examine possible relationships between the observed effects and toxin and retinoic acid (RA) content in the extracts.
View Article and Find Full Text PDFHarmful Algae
September 2020
К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!