Background: Rising pollution plays a crucial role in worsening several respiratory diseases. Particulate Matter (PM)-induced asthma exacerbations are one of the most dangerous events.
Objectives: To assess the correlation between progressive particulate matter short-term exposure and asthma exacerbations, we investigated the role of PM levels on Emergency Department (ED) admissions and hospitalizations for these events in Brescia, an important industrial city located in northern Italy with high yearly levels of air pollution.
Methods: We analyzed 1050 clinical records of ED admissions for suspected asthma exacerbation, starting from January 2014 to December 2017. Daily PM levels were collected from the Environmental Protection Regional Agency. We performed a time-series analysis using a Poisson regression model with single and multiple day-lag. Results were expressed as Relative Risk (RR) and Excess of Relative Risk (ERR) of severe asthma exacerbation over a 10 µg/m increase in PM10 and PM2.5 concentration.
Results: We selected and focused our analysis on 543 admissions for indisputable asthma exacerbation in ED and hospital. The time-series study showed an increase of the RR (CI95%) for asthma exacerbation-related ED admissions of 1.24 with an ERR of 24.2% for PM2.5 at lag0-1 ( < 0.05). We also estimated for PM2.5 a RR (CI95%) of 1.12 with an ERR of 12.5% at lag0-5 ( ≤ 0.05). Again, for PM2.5, an increase of the RR (CI95%) for asthma exacerbation-related hospitalizations of 1.31 with an ERR of 30.7% at lag0-1 ( < 0.05) has been documented. These findings were confirmed and even reinforced considering only the population living in the city.
Conclusions: Short-term PM exposure, especially for PM2.5, plays a critical role in inducing asthma exacerbation events leading to ED admission or hospitalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02770903.2021.1929310 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.
View Article and Find Full Text PDFAm J Epidemiol
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
Long-term exposure to ambient air pollution has been associated with epigenetic age acceleration (EAA) in adults, but its impact on children remains less understood. This study analyzed data from 457 children (mean age: 7.9 years) in the Project Viva cohort (2007-2010, eastern Massachusetts, USA).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi 110007, India. Electronic address:
Urban air pollution has been a global challenge world-wide. While urban vegetation or forest modelling can be useful in reducing the toxicities of the atmospheric gases by their absorption, the surge in gaseous pollutants negatively affects plant growth, thereby altering photosynthetic efficiency and harvest index. The present review analyses our current understanding of the toxic and beneficial effects of atmospheric nitrogen oxides (NO), hydrogen sulphide (HS) and carbon monoxide (CO) on plant growth and metabolism.
View Article and Find Full Text PDFEnviron Int
January 2025
Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 China. Electronic address:
Background: Exposure to fine particulate matter (PM) has been linked to visual impairment. Nevertheless, evidence associating PM constituents with visual impairment in schoolchildren is sparse.
Objectives: To explore the effects of long-term exposure to PM and its constituents on visual impairment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!