Sulfamethoxazole (SMX) is a commonly used antibiotic which accumulation can favor the development of antimicrobial resistance. Therefore, easy and cheap system to monitor the presence of SMX are needed for human health protection. Herein we present a straightforward all electrochemical approach to fabricate a sensor based on a nanocomposite molecularly imprinted polymer (nanoMIP) for the determination of SMX. Firstly, oxidized multiwalled carbon nanotubes (oxMWCNTs) were electrochemically deposited on a polarized electrode to increase electrodic surface area up to 350%. Then, ultrathin overoxidized polypyrrole MIP in presence of SMX was electropolymerized on oxMWCNTs surface (nanoMIP). Finally, antibiotic was electrochemically removed. The obtained nanoMIP was characterized by atomic force microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The nanoMIP was used for the electrochemical detection of SMX evidencing a lower limit of detection (413 nM) and a wider linear range (1.99-10.88 μM) with respect a non-nanostructured film. The nanoMIP evidenced also good affinity and a highly reproducible response (RSD = 1.2%). The sensor was able to determine SMX in milk samples evidencing good recovery values. The proposed approach can be also used in future to easily prepare different nanoMIP based sensors with improved performances for different target molecules thus overcoming current fabrication limits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.04.133 | DOI Listing |
Chem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFFront Robot AI
January 2025
School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom.
Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Neutron-Transformer Reflectometry Advanced Computation Engine (), a neural network model using a transformer architecture, is introduced for neutron reflectometry data analysis. It offers fast, accurate initial parameter estimations and efficient refinements, improving efficiency and precision for real-time data analysis of lithium-mediated nitrogen reduction for electrochemical ammonia synthesis, with relevance to other chemical transformations and batteries. Despite limitations in generalizing across systems, it shows promises for the use of transformers as the basis for models that could accelerate traditional approaches to modeling reflectometry data.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.
View Article and Find Full Text PDFAnal Methods
January 2025
Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!