Space travel has grown during the past 2 decades, and is expected to surge in the future with the establishment of an American Space Force, businesses specializing in commercial space travel, and National Aeronautics and Space Administration's planned sustained presence on the moon. Accompanying this rise, treating physicians are bracing for a concomitant increase in space-related medical problems, including back pain. Back pain is highly prevalent in astronauts and space travelers, with most cases being transient and self-limiting (space adaptation back pain). Pathophysiologic changes that affect the spine occur during space travel and may be attributed to microgravity, rapid acceleration and deceleration, and increased radiation. These include a loss of spinal curvature, spinal muscle atrophy, a higher rate of disc herniation, decreased proteoglycan and collagen content in intervertebral discs, and a reduction in bone density that may predispose people to vertebral endplate fractures. In this article, the authors discuss epidemiology, pathophysiology, prevention, treatment, and future research.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000003812DOI Listing

Publication Analysis

Top Keywords

space travel
12
space
8
pain
4
pain outer
4
outer space
4
space space
4
travel grown
4
grown decades
4
decades expected
4
expected surge
4

Similar Publications

Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide ( ), owing to its effect on cerebral blood flow, tissue , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations in can be detrimental to cerebral health.

View Article and Find Full Text PDF

Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).

Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.

View Article and Find Full Text PDF

Saliva Diagnostics in Spaceflight Virology Studies-A Review.

Viruses

December 2024

JES Tech, Human Health and Performance Directorate, Houston, TX 77058, USA.

Many biological markers of normal and disease states can be detected in saliva. The benefits of saliva collection for research include being non-invasive, ease of frequent sample collection, saving time, and being cost-effective. A small volume (≈1 mL) of saliva is enough for these analyses that can be collected in just a few minutes.

View Article and Find Full Text PDF

Mechanisms and Countermeasures for Muscle Atrophy in Microgravity.

Cells

December 2024

Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis.

View Article and Find Full Text PDF

Fourier energy spectrum centroid: a robust and efficient approach for shear wave speed estimation in ω-K space.

Phys Med Biol

January 2025

Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.

. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!