Solvatomorphism Influence of Porous Organic Cage on CH/CO Separation.

ACS Appl Mater Interfaces

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Published: May 2021

Porous organic molecular (POM) materials can exhibit solvatomorphs via altering their crystallographic packing in the solid state, but investigating real gas mixture separation by porous materials with such a behavior is still very rare. Herein, we report that a lantern-shaped calix[4]resorcinarene-based porous organic cage (POC, namely, ) can exhibit eight distinct solid-state solvatomorphs via crystallization in different solvents. This POC solvatomorphism has a significant influence on their gas sorption capacities as well as separation abilities. Specifically, the apparent Brunauer-Emmett-Teller (BET) surface area determined by nitrogen gas sorption at 77 K for crystallized from toluene/chloroform is up to 406 m g, which is much higher than the rest of solvatomorphs with BET values less than 40 m g. More interestingly, CH and CO adsorbed capacities, in addition to the CH/CO separation ability at room temperature for , are superior to those of crystalized from nitrobenzene, the representative of POC solvatomorphs with low BET surface areas. These results indicate the possibility of adjusting gas sorption and separation properties of POC materials by controlling their solvatomorphs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c04573DOI Listing

Publication Analysis

Top Keywords

porous organic
12
gas sorption
12
solvatomorphism influence
8
organic cage
8
ch/co separation
8
separation porous
8
bet surface
8
separation
5
solvatomorphs
5
porous
4

Similar Publications

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Tandem construction of flavone-bridged conjugated porous polymers for photosynthesis of 2,3-dihydrobenzofurans.

Chem Commun (Camb)

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.

Conjugated porous polymers bearing flavone moieties (FL-CPPs) were synthesized a tandem approach. The carbonylative Sonogashira coupling in tandem with cyclization guided the assembling of building blocks with the accompanied production of flavone skeletons. The FL-CPPs were proved to be efficient metal-free photocatalysts for the [3+2] cycloaddition of phenols with olefins under the irradiation of visible-light.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!