A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial activities play a pivotal role in regulating cell cycle in response to doxorubicin. | LitMetric

Doxorubicin induces both DNA damage and metabolic interference. How these effects interact to modulate cellular toxicity is not completely understood but important given the widespread use of doxorubicin in cancer treatment. This study tests the hypothesis that cell cycle arrest and survival are affected by distinct mitochondrial activities during doxorubicin exposure.Parental and mutant strains deficient in selected genes with mitochondrial function were treated with doxorubicin and assayed for changes in proliferation rates, cell survival and cell cycle arrest kinetics. Mitochondrial DNA content was estimated using quantitative PCR. Mitochondrial function was assessed by measuring oxygen consumption with and without an uncoupler.Parental cells growing in a non-fermentable carbon source medium and mutants lacking mitochondria and grown in glucose medium both show abrupt cell cycle and proliferation arrest during doxorubicin exposure compared to parental cells grown in glucose. Mitochondrial DNA increases during doxorubicin exposure in and in human breast cancer cells. Yeast strains deficient in TCA cycle activity or electron transport both show more abrupt cell cycle arrest than parental cells when exposed to doxorubicin. Concurrent treatment with the mitochondrial uncoupler dinitrophenol facilitates cell cycle progression and proliferation during doxorubicin exposure.Doxorubicin exposure induces mitochondrial DNA synthesis with TCA cycle and oxidative phosphorylation activity having opposing effects on cell proliferation, survival and cell cycle kinetics. TCA cycle activity provides biosynthetic substrates to support cell cycle progression and cell proliferation while electron transport and oxidative phosphorylation facilitate cell cycle arrest and possibly increased cytotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208114PMC
http://dx.doi.org/10.1080/15384101.2021.1919839DOI Listing

Publication Analysis

Top Keywords

cell cycle
36
cycle arrest
16
cell
12
cycle
12
mitochondrial dna
12
tca cycle
12
doxorubicin
9
mitochondrial
8
mitochondrial activities
8
strains deficient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!