Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para-nitrophenyl phosphate (p-NPP) as a model compound, we demonstrate that TiO with a F-modified (001) surface can activate p-NPP dephosphorylation at temperatures as low as 40 °C. By probe-assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron-withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p-NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202104397DOI Listing

Publication Analysis

Top Keywords

room temperature
8
001 surface
8
electronic-state manipulation
4
surface
4
manipulation surface
4
surface titanium
4
titanium activates
4
activates dephosphorylation
4
dephosphorylation tio
4
tio room
4

Similar Publications

Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods.

Environ Sci Pollut Res Int

January 2025

Department of Textile Chemistry, Bandung Polytechnic of Textile Technology, Bandung, West Java, 40272, Indonesia.

Kombucha is a popular fermented beverage that involves fermentation using a symbiotic culture of bacteria and yeast (SCOBY) and produces bacterial cellulose (BC). Carbon and nitrogen sources are essential in kombucha processing and BC production. However, studies on cost-effective BC production as an alternative source of leather have remained scarce.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Verdazyl radical polymers for advanced organic spintronics.

Nat Commun

January 2025

Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.

Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.

View Article and Find Full Text PDF

Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.

View Article and Find Full Text PDF

From the severe acute respiratory syndrome coronavirus in 2003 to the severe acute respiratory syndrome coronavirus 2 in 2019, coronavirus has seriously threatened human health. Electromagnetic waves not only own high penetration and low pollution but also can physically resonate with the virus. Several studies have demonstrated that electromagnetic waves can inactivate viruses efficiently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!