A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An improved in vitro model for studying the structural and functional properties of the endothelial glycocalyx in arteries, capillaries and veins. | LitMetric

The endothelial glycocalyx is a dynamic structure integral to blood vessel hemodynamics and capable of tightly regulating a range of biological processes (ie, innate immunity, inflammation, and coagulation) through dynamic changes in its composition of the brush structure. Evaluating the specific roles of the endothelial glycocalyx under a range of pathophysiologic conditions has been a challenge in vitro as it is difficult to generate functional glycocalyces using commonly employed 2D cell culture models. We present a new multi-height microfluidic platform that promotes the growth of functional glycocalyces by eliciting unique shear stress forces over a continuous human umbilical vein endothelial cell monolayer at magnitudes that recapitulate the physical environment in arterial, capillary and venous regions of the vasculature. Following 72 hours of shear stress, unique glycocalyx structures formed within each region that were distinct from that observed in short (3 days) and long-term (21 days) static cell culture. The model demonstrated glycocalyx-specific properties that match the characteristics of the endothelium in arteries, capillaries and veins, with respect to surface protein expression, platelet adhesion, lymphocyte binding and nanoparticle uptake. With artery-to-capillary-to-vein transition on a continuous endothelial monolayer, this in vitro platform is an improved system over static cell culture for more effectively studying the role of the glycocalyx in endothelial biology and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201802376RRRRDOI Listing

Publication Analysis

Top Keywords

endothelial glycocalyx
12
cell culture
12
arteries capillaries
8
capillaries veins
8
functional glycocalyces
8
shear stress
8
static cell
8
endothelial
6
glycocalyx
5
improved vitro
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!