A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast photoreduction dynamics of a new class of CPD photolyases. | LitMetric

Ultrafast photoreduction dynamics of a new class of CPD photolyases.

Photochem Photobiol Sci

Department of Chemistry, Center for Synthetic Microbiology, Philipps University, 35032, Marburg, Germany.

Published: June 2021

NewPHL is a recently discovered subgroup of ancestral DNA photolyases. Its domain architecture displays pronounced differences from that of canonical photolyases, in particular at the level of the characteristic electron transfer chain, which is limited to merely two tryptophans, instead of the "classical" three or four. Using transient absorption spectroscopy, we show that the dynamics of photoreduction of the oxidized FAD cofactor in the NewPHL begins similarly as that in canonical photolyases, i.e., with a sub-ps primary reduction of the excited FAD cofactor by an adjacent tryptophan, followed by migration of the electron hole towards the second tryptophan in the tens of ps regime. However, the resulting tryptophanyl radical then undergoes an unprecedentedly fast deprotonation in less than 100 ps in the NewPHL. In spite of the stabilization effect of this deprotonation, almost complete charge recombination follows in two phases of ~ 950 ps and ~ 50 ns. Such a rapid recombination of the radical pair implies that the first FAD photoreduction step, i.e., conversion of the fully oxidized to the semi-quinone state, should be rather difficult in vivo. We hence suggest that the flavin chromophore likely switches only between its semi-reduced and fully reduced form in NewPHL under physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-021-00048-4DOI Listing

Publication Analysis

Top Keywords

canonical photolyases
8
fad cofactor
8
ultrafast photoreduction
4
photoreduction dynamics
4
dynamics class
4
class cpd
4
photolyases
4
cpd photolyases
4
newphl
4
photolyases newphl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!