Thermionic energy converters are solid-state heat engines that have the potential to produce electricity with efficiencies of over 30% and area-specific power densities of 100 Wcm. Despite this prospect, no prototypes reported in the literature have achieved true efficiencies close to this target, and many of the most recent investigations report power densities on the order of mWcm or less. These discrepancies stem in part from the low-temperature (<1300 K) test conditions used to evaluate these devices, the large vacuum gap distances (25-100 µm) employed by these devices, and material challenges related to these devices' electrodes. This review will argue that, for feasible electrode work functions available today, efficient performance requires generating output power densities of >1 Wcm and employing emitter temperatures of 1300 K or higher. With this result in mind, this review provides an overview of historical and current design architectures and comments on their capacity to realize the efficiency and power potential of thermionic energy converters. Also emphasized is the importance of using standardized efficiency metrics to report thermionic energy converter performance data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097403 | PMC |
http://dx.doi.org/10.1002/advs.202003812 | DOI Listing |
J Phys Chem A
December 2024
Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom.
Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA is also investigated by electronic structure calculations, which indicate that EDTA has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss.
View Article and Find Full Text PDFAdv Mater
December 2024
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
Metal/semiconductor superlattices represent a fascinating frontier in materials science and nanotechnology, where alternating layers of metals and semiconductors are precisely engineered at the atomic and nano-scales. Traditionally, epitaxial metal/semiconductor superlattice growth requires constituent materials from the same family, exhibiting identical structural symmetry and low lattice mismatch. Here, beyond this conventional constraint, a novel class of epitaxial lattice-matched metal/semiconductor superlattices is introduced that utilizes refractory hexagonal elemental transition metals and wide-bandgap III-nitride semiconductors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Engineering, Science, and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil; Pos-Graduate Program of Chemistry from Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil. Electronic address:
The present research produced a new nanocomposite based on carboxymethyl cellulose (CMC) and graphene oxide (GO) for application in energy devices. A modified Hummers' method and two modifiers (UV radiation and heat temperature) were used. The nanocomposite was characterized by spectroscopies (FTIR, RAMAN, UV Vis), X-ray diffraction, morphological (SEM, TEM, DLS), and surface charge (ZP).
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
J Mater Sci Mater Med
November 2024
Department of Physics, Faculty of Science, Canakkale Onsekiz Mart University, 17110, Canakkale, Turkey.
The quality of platelet-rich fibrin (PRF) is contingent on the surface characteristics interfacing with blood. Titanium's superior platelet activation, surpassing silica, has made Titanium-platelet-rich fibrin (T-PRF) a favored autogenous bone graft material due to its extended degradation time. Pioneering a novel approach, this study aims to achieve an enhanced fibrin structure using glass tubes coated with nano-titanium, marking the surface's debut in our PRF production endeavors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!