Embryo-environment interactions are of paramount importance during the development of all organisms, and impacts during this period can echo far into later stages of ontogeny. African annual fish of the genus live in temporary pools and their eggs survive the dry season in the dry bottom substrate of the pools by entering a facultative developmental arrest termed diapause. Uniquely among animals, the embryos (encased in eggs) may enter diapause at three different developmental stages. Such a system allows for the potential to employ different regulation mechanisms for each diapause. We sampled multiple embryo banks across the progressing season, species, and populations. We present important baseline field data and examine the role of environmental regulation in the embryonic development of this unique system. We describe the course of embryo development in the wild and find it to be very different from the typical development under laboratory conditions. Development across the embryo banks was synchronized within and across the sampled populations with all embryos entering diapause I during the rainy season and diapause II during the dry season. Asynchrony occurred at transient phases of the habitat, during the process of habitat desiccation, and at the end of the dry season. Our findings reveal the significance of environmental conditions in the serial character of the annual fish diapauses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093744 | PMC |
http://dx.doi.org/10.1002/ece3.7402 | DOI Listing |
Maladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon () are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, PR China; Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, PR China. Electronic address:
Radiation risk through seafood consumption is a big public concern under the discharge of nuclear contaminated water. Plutonium is an important radionuclide in view of radiation risk due to its high radiological and chemical toxicity, as well as consistent presence in the environment. The distribution and level of plutonium isotopes (Pu, Pu) in marine biota collected along the coast of China in 2022-2023 were investigated.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Fiji Country Program, Wildlife Conservation Society, Suva, Fiji.
Pacific Island communities are heavily dependent on fisheries for subsistence and livelihoods. Yet, despite their importance, coastal fisheries are poorly managed and commercial pressures increasingly threaten them. Groupers (Epinephelidae) are exceptionally vulnerable to overexploitation due to aspects of their biology while their economic value makes them a prime target for commerce.
View Article and Find Full Text PDFMov Ecol
January 2025
Great Lakes Laboratory for Fisheries and Aquatic Science, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON, Canada.
Background: Globally, temperate lakes are experiencing increases in surface water temperatures, extended periods of summer stratification, and decreases of both surface and deep water dissolved oxygen (DO). The distribution of fish is influenced by a variety of factors, but water temperature and dissolved oxygen are known to be particularly constraining such that with climate change, fish will likely feel the "squeeze" from above and below.
Methods: This study used acoustic telemetry to explore the effects of both thermal stratification and the deoxygenation of the hypolimnion on walleye (Sander vitreus) movements in a coastal embayment in Lake Ontario.
Biol Lett
January 2025
Department of Forestry and Natural Resources, Purdue University, Forestry Building, 195 Marsteller Street, West Lafayette, IN 47907, USA.
Temperate fishes often spawn in response to environmental cues, such as temperature, thereby facilitating larval emergence concurrent with suitable biotic and abiotic conditions, such as plankton blooms. Climatic changes may alter the reproductive phenology of spring- and autumn-spawning freshwater fish populations. Such effects may depend on the sensitivity of reproductive phenology to ambient temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!