Organisms use color for camouflage, sexual signaling, or as a warning sign of danger. Primates are one of the most vibrantly colored Orders of mammals. However, the genetics underlying their coat color are poorly known, limiting our ability to study molecular aspects of its evolution. The role of the melanocortin 1 receptor () in color evolution has been implicated in studies on rocket pocket mice (), toucans (Ramphastidae), and many domesticated animals. From these studies, we know that changes in result in a yellow/red or a brown/black morphology. Here, we investigate the evolution of in Lorisidae, a monophyletic nocturnal primate family, with some genera displaying high contrast variation in color patterns and other genera being monochromatic. Even more unique, the Lorisidae family has the only venomous primate: the slow loris (). Research has suggested that the contrasting coat patterns of slow lorises are aposematic signals for their venom. If so, we predict the in slow lorises will be under positive selection. In our study, we found that Lorisidae is under purifying selection ( = 0.0912). In Lorisidae there were a total of 75 variable nucleotides, 18 of which were nonsynonymous. Six of these nonsynonymous substitutions were found on the branch, which our reconstructions found to be the only member of Lorisidae that has predominantly lighter coat color; no substitutions were associated with . Our findings generate new insight into the genetics of pelage color and evolution among a unique group of nocturnal mammals and suggest putative underpinnings of monochromatic color evolution in the lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093732PMC
http://dx.doi.org/10.1002/ece3.7338DOI Listing

Publication Analysis

Top Keywords

coat color
12
color evolution
12
color
8
nocturnal primate
8
primate family
8
slow lorises
8
lorisidae
6
evolution
5
examining molecular
4
molecular basis
4

Similar Publications

Background: Alopecia X (AX) is a common noninflammatory alopecic condition of Pomeranian dogs with an unknown cause. While a genetic aetiology is suspected, no current tests can predict the development of this disorder or confirm the aetiology. Therefore, identifying potential risk indicators for the development of AX would be of value in this breed.

View Article and Find Full Text PDF

Identifying Candidate Genes Related to Soybean () Seed Coat Color via RNA-Seq and Coexpression Network Analysis.

Genes (Basel)

January 2025

College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.

Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.

View Article and Find Full Text PDF

Morphological diversity variation of seed traits among 587 germplasm resources of Medicago Genus and 32 germplasm resources of Trigonella Genus.

Sci Rep

January 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Germplasm resources within the Medicago genus are highly regarded for their value as forage crops and their critical roles in nitrogen cycling, ecosystem restoration, and soil structure improvement. Therefore, understanding the diversity of seed morphology in this genus is essential for advancing its development and utilization. This study analyzed seed samples from 587 germplasm accessions representing 77 species within Medicago genus, as well as 32 accessions from 21 species within the closely related genus Trigonella.

View Article and Find Full Text PDF

PSC1, a basic/helix-loop-helix transcription factor controlling the purplish-red testa trait in peanut.

J Integr Plant Biol

January 2025

College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China.

Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat.

View Article and Find Full Text PDF

Background And Aim: Coat color is a phenotypic trait that is affected by many functional genes. In addition, coat color is an important characteristic of breeds in livestock. This study aimed to determine functional genes for coat color patterns in Sumatran native cattle in Indonesia using a genome-wide association study method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!