Bird assemblages in arid Australia are often characterized as being highly variable through time in response to boom and bust dynamics, although the importance of habitat in structuring assemblages at a local-scale is also recognized. We use a novel approach to investigate the importance of rainfall variability in structuring bird assemblages in a resource-limited environment. Monthly bird surveys were conducted at ten plots for 8 years at a botanical and zoological park in central Australia, including five irrigated plots within a fenced area and five natural plots outside. Irrigation-used to promote growth, flowering, and fruiting of plants-created an artificial resource-enhanced environment against which the response of birds to natural fluctuations in season and rainfall were compared. Species richness was generally maintained at a higher level in resource-enhanced plots during dry times but was higher in natural plots when rainfall was high, mainly due to increases in granivores and insectivores. Honeyeaters were consistently more abundant at irrigated plots. Rainfall was important in structuring bird assemblages at all plots; however, assemblages were more stable in irrigated plots and did not respond as dramatically to a period of very high rainfall. The comparative smoothing of fluctuations in the composition and abundance of birds in irrigated areas highlights the importance of primary productivity, normally tied to rainfall, in driving temporal change in arid-zone bird communities. There was also evidence that different plots in differing habitats supported distinct bird assemblages and that this spatial distinctiveness persisted irrespective of rainfall and determined, to some extent, the response to rainfall. Our study is one of few long-term studies of arid bird assemblages and highlights the importance of both long-term cycles of productivity driven by rain and season as well as site differences in the dynamics of arid-zone bird communities. These insights are particularly valuable as climate change further exacerbates rainfall variability worldwide and initiatives to conserve avifauna in increasingly extreme environments may be required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093688 | PMC |
http://dx.doi.org/10.1002/ece3.7293 | DOI Listing |
Integr Zool
January 2025
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
The burrow microhabitats created by burrowing mammals, as a hotspot for biodiversity distribution in ecosystems, provide multiple critical resources for many other sympatric species. However, the cascading effects of burrow resources on sympatric animal community assemblages and interspecific interactions are largely unknown. During 2020-2023, we monitored 184 Chinese pangolin (Manis pentadactyla) burrows using camera traps to reveal the burrow utilization patterns of commensal species.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
HUN-REN Veterinary Medical Research Institute, Tábornok u. 2., H-1143 Budapest, Hungary.
Avian pox is a globally spread viral disease affecting a wide spectrum of wild and domesticated bird species. The disease is caused by a diverse group of large DNA viruses, namely, avipoxviruses (genus , family ). In this study, gross pathological examination and histopathological examination of skin lesions and several organs suggested acute poxvirus infection of a Eurasian crane (, Linnaeus, 1758).
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Environmental Systems Science ETH Zürich Switzerland.
Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Anatomy, University of Otago, Dunedin, New Zealand.
In a changing environment, vacant niches can be filled either by adaptation of local taxa or range-expanding invading species. The relative tempo of these patterns is of key interest in the modern age of climate change. Aotearoa New Zealand has been a hotspot of biogeographic research for decades due to its long-term isolation and dramatic geological history.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague, Czech Republic.
Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However, the seasonal dynamics of their bird communities have been scarcely explored at large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the Neotropical Region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!