Understanding the mechanism of protective immunity in the nasal mucosae is central to the design of more effective vaccines that prevent nasal infection and transmission of Bordetella pertussis. We found significant infiltration of IL-17-secreting CD4 tissue-resident memory T (T) cells and Siglec-F neutrophils into the nasal tissue during primary infection with B. pertussis. Il17A mice had significantly higher bacterial load in the nasal mucosae, associated with significantly reduced infiltration of Siglec-F neutrophils. Re-infected convalescent mice rapidly cleared B. pertussis from the nasal cavity and this was associated with local expansion of IL-17-producing CD4 T cells. Depletion of CD4 T cells from the nasal tissue during primary infection or after re-challenge of convalescent mice significantly delayed clearance of bacteria from the nasal mucosae. Protection was lost in Il17A mice and this was associated with significantly less infiltration of Siglec-F neutrophils and antimicrobial peptide (AMP) production. Finally, depletion of neutrophils reduced the clearance of B. pertussis following re-challenge of convalescent mice. Our findings demonstrate that IL-17 plays a critical role in natural and acquired immunity to B. pertussis in the nasal mucosae and this effect is mediated by mobilizing neutrophils, especially Siglec-F neutrophils, which have high neutrophil extracellular trap (NET) activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379078 | PMC |
http://dx.doi.org/10.1038/s41385-021-00407-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!