Training machine learning models on classical computers is usually a time and compute intensive process. With Moore's law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum computing to train machine learning models efficiently. Adiabatic quantum computers can approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization (QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, we believe adiabatic quantum computers might be instrumental in training machine learning models efficiently in the post Moore's law era. In order to solve problems on adiabatic quantum computers, they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate the training problems of three machine learning models-linear regression, support vector machine (SVM) and balanced k-means clustering-as QUBO problems, making them conducive to be trained on adiabatic quantum computers. We also analyze the computational complexities of our formulations and compare them to corresponding state-of-the-art classical approaches. We show that the time and space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or equivalent (in case of linear regression) to their classical counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113552PMC
http://dx.doi.org/10.1038/s41598-021-89461-4DOI Listing

Publication Analysis

Top Keywords

machine learning
28
learning models
16
adiabatic quantum
16
quantum computers
16
training machine
12
machine
8
classical computers
8
moore's law
8
models efficiently
8
qubo problems
8

Similar Publications

Objective: To investigate how surface treatment affects the color of enamel and dentin, and to evaluate whether the color differences are acceptable.

Materials And Methods: Freshly extracted premolars were prepared using diamond burs (blue, red, and yellow tapes). Tooth surfaces were divided into control and acid-etched areas and treated with phosphoric acid (5, 15, 30, 45, and 60 s).

View Article and Find Full Text PDF

Comprehensive VR dataset for machine learning: Head- and eye-centred video and positional data.

Data Brief

December 2024

Department of Neurophysics, Philipps University Marburg, Karl-von-Frisch Straße 8a, 35043 Marburg, Hesse, Germany.

We present a comprehensive dataset comprising head- and eye-centred video recordings from human participants performing a search task in a variety of Virtual Reality (VR) environments. Using a VR motion platform, participants navigated these environments freely while their eye movements and positional data were captured and stored in CSV format. The dataset spans six distinct environments, including one specifically for calibrating the motion platform, and provides a cumulative playtime of over 10 h for both head- and eye-centred perspectives.

View Article and Find Full Text PDF

Effective data representation in machine learning and deep learning is paramount. For an algorithm or neural network to capture patterns in data and be able to make reliable predictions, the data must appropriately describe the problem domain. Although there exists much literature on data preprocessing for machine learning and data science applications, novel data representation methods for enhancing machine learning model performance remain highly absent within the literature.

View Article and Find Full Text PDF

Aim: Lymph node metastasis is an adverse prognostic factor in pancreatic ductal adenocarcinoma. However, it remains a challenge to predict lymph node metastasis using preoperative imaging alone. We used machine learning (combining preoperative imaging findings, tumor markers, and clinical information) to create a novel prediction model for lymph node metastasis in resectable pancreatic ductal adenocarcinoma.

View Article and Find Full Text PDF

Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches.

J Pharm Anal

November 2024

BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.

To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!