For countless applications in science and technology, light must be concentrated, and concentration is classically achieved with reflective and refractive elements. However, there is so far no efficient way, with a 2D detector, to detect photons produced inside an extended volume with a broad or isotropic angular distribution. Here, with theory and experiment, we propose to stochastically transform and concentrate a volume into a smaller surface, using a high-albedo Ulbricht cavity and a small exit orifice through cavity walls. A 3D gas of photons produced inside the cavity is transformed with a 50% number efficiency into a 2D Lambertian emitting orifice with maximal radiance and a much smaller size. With high-albedo quartz-powder cavity walls ([Formula: see text]), the orifice area is [Formula: see text] times smaller than the walls' area. When coupled to a detectivity-optimized photon-counter ([Formula: see text]) the detection limit is [Formula: see text]. Thanks to this unprecedented sensitivity, we could detect the luminescence produced by the non-catalytic disproportionation of hydrogen peroxide in pure water, which has not been observed so far. We could also detect the ultraweak bioluminescence produced by yeast cells at the onset of their growth. Our work opens new perspectives for studying ultraweak luminescence, and the concept of stochastic 3D/2D conjugation should help design novel light detection methods for large samples or diluted emitters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113247 | PMC |
http://dx.doi.org/10.1038/s41598-021-88091-0 | DOI Listing |
Sci Rep
January 2025
Department of Anesthesiology, Changhua Christian Hospital, Changhua, 50050, Taiwan.
In the modern healthcare system, the rational allocation of emergency department (ED) resources is crucial for enhancing emergency response efficiency, ensuring patient safety, and improving the quality of medical services. This paper focuses on the issue of ED resource allocation and designs a priority sorting system for ED patients. The system classifies patients into two queues: urgent and routine.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia.
This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion system(SPCS) that operates under real-time weather conditions. The primary contribution is the introduction of an uncertain model, which has not been published before, simulating the SPCS's actual functioning. The proposed robust control strategy involves two stages: first, modifying the standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using real-time measurements of temperature, solar irradiance, and wind speed.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Animal Welfare Science, Departments of Comparative Pathobiology and Animal Science, Purdue University, West Lafayette, IN, 47907, USA.
It is well established that maternal factors can affect the abilities of offspring to cope with stressors and can influence their overall welfare states. However, maternal effects have not been extensively explored in US commercial breeding kennels (CBKs). Therefore, the objective of this study was to identify if fear and stress in dams affected puppy welfare metrics in CBKs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!