Introduction: The goal of this research was to experimentally evaluate the surface morphology and adhesion capacity of Streptococcus mutans (U159) on brackets with thin films of titanium nitride (TN) and of titanium nitride doped with calcium phosphate (TNCP).

Methods: Twenty-four metallic brackets were equally allocated to 3 groups (n = 8), according to the type of covering (no covering, TNCP, and TN). The coatings were deposited by cathodic cage (TNCP and TN groups) and were evaluated by scanning electron microscopy and energy dispersive x-ray spectrometry. The biofilm formation of S. mutans on the surface of brackets was determined by crystal violet assay and subsequent optical density quantification.

Results: There was homogeneity on the surface morphology of the tie wing area in all groups, whereas the TNCP group has presented particles in the slot. After 24 hours, a biofilm of S. mutans was formed in all the observed groups. The optical density obtained in all 3 groups was similar (no covering, 0.347 ± 0.042; TNCP, 0.238 ± 0.055; TN, 0.226 ± 0.057), with no statistically relevant difference (P = 0.06).

Conclusions: The thin film of TNCP has altered the surface of the bracket's slot, whereas the coatings of TN and TNCP have not altered the superficial morphology of the tie wings. The presence of coatings have not influenced the formation of the S. mutans biofilm on the surface of metallic brackets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2020.04.024DOI Listing

Publication Analysis

Top Keywords

surface morphology
12
titanium nitride
12
thin films
8
films titanium
8
calcium phosphate
8
metallic brackets
8
formation mutans
8
optical density
8
morphology tie
8
tncp altered
8

Similar Publications

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Background/objectives: Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen.

View Article and Find Full Text PDF

Although approaches for the online surface detection of automotive pipelines exist, low defect area rates, small-sample and long-tailed data, and the difficulty of detection due to the variable morphology of defects are three major problems faced when using such methods. In order to solve these problems, this study combines traditional visual detection methods and deep neural network technology to propose a transfer learning multi-channel fusion decision network without significantly increasing the number of network layers or the structural complexity. Each channel of the network is designed according to the characteristics of different types of defects.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!