Muscle contraction results from force-generating cross-bridge interactions between myosin and actin. Cross-bridge cycling kinetics underlie fundamental contractile properties, such as active force production and energy utilization. Factors that influence cross-bridge kinetics at the molecular level propagate through the sarcomeres, cells and tissue to modulate whole-muscle function. Conversely, movement and changes in the muscle length can influence cross-bridge kinetics on the molecular level. Reduced, single-molecule and single-fibre experiments have shown that increasing the strain on cross-bridges may slow their cycling rate and prolong their attachment duration. However, whether these strain-dependent cycling mechanisms persist in the intact muscle tissue, which encompasses more complex organization and passive elements, remains unclear. To investigate this multi-scale relationship, we adapted traditional step-stretch protocols for use with mouse soleus muscle during isometric tetanic contractions, enabling novel estimates of length-dependent cross-bridge kinetics in the intact skeletal muscle. Compared to rates at the optimal muscle length (), we found that cross-bridge detachment rates increased by approximately 20% at 90% of (shorter) and decreased by approximately 20% at 110% of (longer). These data indicate that cross-bridge kinetics vary with whole-muscle length during intact, isometric contraction, which could intrinsically modulate force generation and energetics, and suggests a multi-scale feedback pathway between whole-muscle function and cross-bridge activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190544 | PMC |
http://dx.doi.org/10.1098/rspb.2020.2895 | DOI Listing |
Sci Rep
December 2024
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.
View Article and Find Full Text PDFSports Med
November 2024
Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil.
The force-length relationship is usually obtained for isometric contractions with maximal activation, but less is known about how sarcomere length affects force during submaximal activation. During submaximal activation, length-dependent alterations in calcium sensitivity, owing to changes in cross-bridge kinetics (rate of attachment and/or detachment), result in an activation-dependent shift in optimal length to longer sarcomere lengths. It is known that sarcomere length, as well as temperature and phosphorylation of the regulatory light chains of myosin, can modify Ca⁺ sensitivity by altering the probability of cross-bridge interaction.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2024
Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States.
The second-generation myosin activator danicamtiv (DN) has shown improved function compared to the first generation myosin activator omecamtiv mecarbil (OM) in non-failing myocardium by enhancing cardiac force generation but attenuating slowed relaxation. However, whether the functional improvement with DN compared to OM persists in remodeled failing myocardium remain unknown. Therefore, this study aimed to investigate the differential contractile response to myosin activators in non-failing and failing myocardium.
View Article and Find Full Text PDFSmall
December 2024
Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany.
Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native β-cardiac myosin (βM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites coupled to inorganic phosphate (Pi) release. Here, myofibrils from samples of human left ventricle (β-slow MyHC-7) and left atrium (α-fast MyHC-6) from healthy donors were used to study the differential effects of μmolar [OM] on isometric force in relaxing conditions (pCa 9.0) and at maximal (pCa 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!