Background: There are significant differences in outcomes for different histological subtypes of cervical cancer (CC). Yet, it is difficult to distinguish CC subtypes using non-invasive methods.

Purpose: To investigate whether multiparametric magnetic resonance imaging (MRI)-based radiomics analysis can differentiate CC subtypes and explore tumor heterogeneity.

Material And Methods: This study retrospectively analyzed 96 patients with CC (squamous cell carcinoma [SCC] = 50, adenocarcinoma [AC] = 46) who underwent pelvic MRI before surgery. Radiomics features were extracted from the tumor volumes on five sequences (sagittal T2-weighted imaging [T2SAG], transverse T2-weighted imaging [T2TRA], sagittal contrast-enhanced T1-weighted imaging [CESAG], transverse contrast-enhanced T1-weighted imaging [CETRA], and apparent diffusion coefficient [ADC]). Clustering and logistic regression were used to examine the distinguishing capabilities of radiomics features extracted from five different MR sequences.

Results: Among the 105 extracted radiomics features, there were 51, 38, 37, and 2 features that showed intergroup differences for T2SAG, T2TRA, ADC, and CESAG, respectively (all  < 0.05). AC had greater textural heterogeneity than SCC ( < 0.05). Upon unsupervised clustering of significantly different features, T2SAG achieved the highest accuracy (0.844; sensitivity = 0.920; specificity = 0.761). The largest area under the curve (AUC) for classification ability was 0.86 for T2SAG. Hence, the radiomics model from five combined MR sequences (AUC = 0.89; accuracy = 0.81; sensitivity = 0.67; specificity = 0.94) exhibited better differentiation ability than any MR sequence alone.

Conclusion: Multiparametric MRI-based radiomics models may be a promising method to differentiate AC and SCC. AC showed more heterogeneous features than SCC.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851211014188DOI Listing

Publication Analysis

Top Keywords

radiomics features
12
mri-based radiomics
8
radiomics analysis
8
subtypes cervical
8
cervical cancer
8
features extracted
8
t2-weighted imaging
8
contrast-enhanced t1-weighted
8
t1-weighted imaging
8
radiomics
5

Similar Publications

Node Reporting and Data System 1.0 (Node-RADS) for the Assessment of Oncological Patients' Lymph Nodes in Clinical Imaging.

J Clin Med

January 2025

Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy.

The assessment of lymph node (LN) involvement with clinical imaging is a key factor in cancer staging. Node Reporting and Data System 1.0 (Node-RADS) was introduced in 2021 as a new system specifically tailored for classifying and reporting LNs on computed tomography (CT) and magnetic resonance imaging scans.

View Article and Find Full Text PDF

Sphenoid wing meningiomas (SWM) frequently compress structures of the optic pathway, resulting in significant visual dysfunction characterized by vision loss and visual field deficits, which profoundly impact patients' quality of life (QoL), daily activities, and independence. The objective of this study was to assess the impact of SWM surgery on patient-reported outcome measures (PROMs) regarding postoperative visual function. The Visual Function Score Questionnaire (VFQ-25) is a validated tool designed to assess the impact of visual impairment on quality of life.

View Article and Find Full Text PDF

: We constructed a prediction model to predict a 2-year locoregional recurrence based on the clinical features and radiomic features extracted from the machine learning method using computed tomography (CT) before definite chemoradiotherapy (dCRT) in locally advanced esophageal cancer. : A total of 264 patients (156 in Beijing, 87 in Tianjin, and 21 in Jiangsu) were included in this study. All those locally advanced esophageal cancer patients received definite radiotherapy and were randomly divided into five subgroups with a similar number and divided into training groups and validation groups by five cross-validations.

View Article and Find Full Text PDF

The duration of the response to radiotherapy-related treatment is a critical prognostic indicator for patients with nasopharyngeal carcinoma (NPC). Persistent tumor status, including residual tumor presence and early recurrence, is associated with poorer survival outcomes. To address this, we developed a prediction model to identify patients at a high risk of persistent tumor status prior to initiating treatment.

View Article and Find Full Text PDF

Background/objectives: Pembrolizumab monotherapy is approved in Canada for first-line treatment of advanced NSCLC with PD-L1 ≥ 50% and no EGFR/ALK aberrations. However, approximately 55% of these patients do not respond to pembrolizumab, underscoring the need for the early intervention of non-responders to optimize treatment strategies. Distinguishing the 55% sub-cohort prior to treatment is a real-world dilemma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!