Ag-exchanged mesoporous chromium terephthalate with sulfonate for removing radioactive methyl iodide at extremely low concentrations in humid environments.

J Hazard Mater

Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea. Electronic address:

Published: September 2021

The development of efficient adsorbents to remove radioactive methyl iodide (CHI) in humid environments is crucial for air purification after pollution by nuclear power plant waste. In this work, we successfully prepared a post-synthetic covalent modified MIL-101 with a sulfonate group followed by the ion-exchange of Ag (I), which is well characterized by diffuse reflectance FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and the hydrophobic index (HI). After modification of the MOFs, we applied functionalized MIL-101 obtained by either one-pot synthesis (MIL-101-SOAg) or a post-synthetic modification process (MIL-101-RSOAg, R = NH(CH)) to remove the CHI at an extremely low concentration (0.31 ppm) in an environment with very high relative humidity (RH 95%). Enhanced hydrophobicity of the surface-modified MIL-101 was evaluated by examining the HI with the competitive adsorption of water and cyclohexane vapor, with a high surface area maintained, as confirmed by Ar physisorption. Interestingly, the post-synthetically modified MIL-101-RSOAg showed exceptional adsorption performance as determined by its decontamination factor (DF = 195,350) at 303 K and RH 95%. This performance was in comparison to Ag (I)-exchanged 13X zeolite and MIL-101-SOAg, which include much higher amounts of Ag. Furthermore, MIL-101-RSOAg retained ~94-100% of its fresh adsorbent performance during five cycle repetitions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125904DOI Listing

Publication Analysis

Top Keywords

radioactive methyl
8
methyl iodide
8
extremely low
8
humid environments
8
ag-exchanged mesoporous
4
mesoporous chromium
4
chromium terephthalate
4
terephthalate sulfonate
4
sulfonate removing
4
removing radioactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!