AI Article Synopsis

  • The world's largest Ulva bloom was observed in the Yellow Sea, China, in 2007, originating from the cultivation of Porphyra yezoensis (Nori).
  • A new method involving chlorine dioxide as an algaecide was tested to control the overwintering banks of green algae on cultivation ropes in early spring.
  • The treatment was effective in eliminating the green algae within two weeks and inhibiting their growth for at least eight weeks, potentially reducing future Ulva blooms in the area.

Article Abstract

It has been 14 years since the world's largest Ulva bloom appeared in the Yellow Sea, China in 2007. Although it is clear that the Ulva bloom originates from the culture system of Porphyra yezoensis (Nori) in the southern Yellow Sea, how to control it is still little understood. Since overwintering banks played a crucial role in the development of spring population of green algae on the cultivation ropes, here, a promising method was presented to prevent the development of Ulva bloom by the inactivation of the overwintering banks of green algae on the P. yezoensis cultivation ropes during February and early March. Chlorine dioxide, an environment-friendly disinfectant was used as algaecide with dosage of no lower than 40 mg/L at the contact time of 1 min. The overwintering green algae gradually disappeared within two weeks after the treatment. Furthermore, the growth of spring population of green algae on the cultivation ropes was effectively inhibited for at least eight weeks, which contribute to prevent the formation of floating populations during cultivation facilities collection. It was expected that the present method, if to be applied in the P. yezoensis cultivation areas in southern Yellow Sea, may mitigate the magnitude of the Ulva blooms in the Yellow Sea at a lower cost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112424DOI Listing

Publication Analysis

Top Keywords

green algae
20
yellow sea
20
ulva bloom
12
cultivation ropes
12
overwintering green
8
southern yellow
8
overwintering banks
8
spring population
8
population green
8
algae cultivation
8

Similar Publications

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).

View Article and Find Full Text PDF

A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase.

Environ Sci Process Impacts

January 2025

Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF

Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

December 2024

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Article Synopsis
  • Hydrothermal carbonization (HTC) transforms waste biomass, particularly high nitrogen feedstocks like kitchen garbage and blue-green algae, into valuable resources, but the characteristics of small hydrochar particles remain underexplored.
  • Hydrochar particles show unique properties such as poor porosity, moderate pH, negative charge, and high hydrophobicity, which differ from the original hydrochar and secondary char derived from simpler biomasses.
  • The study identifies complex formation mechanisms through various chemical reactions in the hydrochar microparticles, highlighting their potential as soil fertilizers and decontaminants while emphasizing that effectiveness is influenced by HTC temperature and type of biomass used.
View Article and Find Full Text PDF

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!