The natural macroalgal community, which developed in the unique and extremely Cr(VI)-polluted aquatic reservoir situated near a historical chromium-waste landfill, was studied in order to recognize the main mechanisms of Cr(VI) detoxification by the algal species. The conducted taxonomic analysis revealed mixed composition of the filamentous forms of algae and showed that three species of Tribonema, namely T. vulgare, T. microchloron and T. viride, which have not been studied before with regard to the mechanisms of Cr(VI) removal, are likely responsible for the effective bioremediation of this highly Cr(VI)-polluted habitat. The studied algal community, with the ability to grow in extremely high concentrations of Cr(VI), i.e. up to ca. 6150 times the upper limit for surface water, exhibited hyperaccumulative properties for chromium (max 16230 mg/kg dry weight) under the given environmental conditions. We found that the main mechanism of Cr(VI) detoxification was reduction followed by Cr(III) biosorption - feasibly by ion exchange and complexation mechanisms - and that the excellent efficiency of chromium reduction under the given, unfavorable weakly alkaline conditions indicates the biological origin of this process. It was concluded that the examined reservoir inhabited by the algal community can be used, after some modifications, as a simple cost-effective "bioreactor" allowing the reduction of chromium concentration to the desired level. Moreover, the conducted studies are also essential to obtain in-depth knowledge and should also be helpful in the relevance of the community for its further application as a potential biosorbent of Cr(VI) on a global scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147501DOI Listing

Publication Analysis

Top Keywords

mechanisms crvi
8
crvi detoxification
8
algal community
8
crvi
5
natural community
4
community macroalgae
4
macroalgae chromium-contaminated
4
chromium-contaminated site
4
site effective
4
effective remediation
4

Similar Publications

A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.

View Article and Find Full Text PDF

Groundwater monitoring is a crucial part of groundwater remediation that produces data from various strategically placed wells to maintain a water quality standard. Using the United States Department of Energy's Hanford 100-HRD area well data, recurrent neural networks are trained in the form of one-dimensional Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Dual-stage Attention-based LSTM (DA-LSTM) networks to reduce monitoring costs and increase data sampling responsiveness that is subject to laboratory analysis delays, with the best network being DA-LSTM achieving an R score of 0.82.

View Article and Find Full Text PDF

This study compares the material characteristics and evaluates the Cr(VI) adsorption capacity of biochar derived from a novel byproduct (young durian fruit, YDF), synthesized using two pyrolysis methods (traditional and microwave-assisted). The optimal pyrolysis conditions for porosity were 800 °C and 800 W for 30 min, respectively. The traditional pyrolysis method yielded a very high surface area and pore volume (668 m/g; 0.

View Article and Find Full Text PDF

These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women.

View Article and Find Full Text PDF

Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the S of material improved from 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!