Intranasal (IN) administration, a non-invasive route, is explored to overcome the limitations of conventional subcutaneous (SC) injection for Japanese encephalitis (JE) immunisation. Mucoadhesive nanoparticles (NPs) are recognised for the benefits they offer via IN delivery, such as extended retention time of the vaccine on the mucosa. The purpose of this study was to evaluate immunisation effect of live attenuated Japanese encephalitis-chimeric virus vaccine (JE-CV)-loaded mucoadhesive NPs based on chitosan (CS) or chitosan maleimide (CM), a novel mucoadhesive polymer, via the IN route to improve the mucosal immunisation against JE. The results revealed that IN immunisation stimulated seroprotection following PRNT evaluation. Moreover, compared with SC immunisation, IN immunisation in mice provided a higher sIgA level, leading to improved mucosal immune response. In addition, chitosan-based NPs showed an adjuvant effect on the IN vaccine due to their mucoadhesive and antigen-uptaken properties. CM NPs successfully induced sIgA. In contrast, SC JE-CV immunisation induced negligible mucosal immunity. These immunological advantages revealed that JE-CV-loaded mucoadhesive NPs are a promising approach for IN vaccination as an alternative route for JE protection due to the stimulatory effects on both mucosal and systemic immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.05.050DOI Listing

Publication Analysis

Top Keywords

immunisation
8
immunisation live
8
live attenuated
8
attenuated japanese
8
japanese encephalitis
8
je-cv-loaded mucoadhesive
8
mucoadhesive nps
8
mucoadhesive
5
nps
5
feasibility chitosan-based
4

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!