Background: Understanding the genetic interplay between human hosts and infectious pathogens is crucial for how we interpret virulence factors. Here, we tested for associations between HIV and host genetics, and interactive genetic effects on viral load (VL) in HIV-positive antiretroviral treatment-naive clinical trial participants.
Methods: HIV genomes were sequenced and the encoded amino acid (AA) variants were associated with VL, human single nucleotide polymorphisms (SNPs), and imputed HLA alleles using generalized linear models with Bonferroni correction.
Results: Human (388 501 SNPs) and HIV (3010 variants) genetic data were available for 2122 persons. Four HIV variants were associated with VL (P < 1.66 × 10-5). Twelve HIV variants were associated with a range of 1-512 human SNPs (P < 4.28 × 10-11). We found 46 associations between HLA alleles and HIV variants (P < 1.29 × 10-7). HIV variants and immunotypes when analyzed separately were associated with lower VL, whereas the opposite was true when analyzed in concert. Epitope binding predictions supported our observations.
Conclusions: Our results show the importance of immunotype specificity on viral antigenic determinants, and the identified genetic interplay emphasizes that viral and human genetics should be studied in the context of each other.Clinical Trials Registration: NCT00867048.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672757 | PMC |
http://dx.doi.org/10.1093/infdis/jiab253 | DOI Listing |
Vet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Hospitais da Universidade de Coimbra (HUC), ULS Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.
Background: Syndromic genetic disorders affecting vision can also cause hearing loss, and Usher syndrome is by far the most common etiology. However, many other conditions can present dual sensory impairment. Accurate diagnosis is essential for providing patients with genetic counseling, prognostic information, and appropriate resources.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
Background: Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!