Meta-Learning in Neural Networks: A Survey.

IEEE Trans Pattern Anal Mach Intell

Published: September 2022

AI Article Synopsis

  • Meta-learning, or learning-to-learn, focuses on enhancing learning algorithms based on previous experiences, moving away from solving tasks from scratch.
  • The survey covers definitions of meta-learning and its relationship with other fields like transfer learning and hyperparameter optimization, along with a new taxonomy for current methods.
  • It explores successful applications like few-shot learning and reinforcement learning, while also identifying ongoing challenges and potential research areas in meta-learning.

Article Abstract

The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where tasks are solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many conventional challenges of deep learning, including data and computation bottlenecks, as well as generalization. This survey describes the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning such as few-shot learning and reinforcement learning. Finally, we discuss outstanding challenges and promising areas for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3079209DOI Listing

Publication Analysis

Top Keywords

learning algorithm
8
meta-learning
7
learning
7
meta-learning neural
4
neural networks
4
networks survey
4
survey field
4
field meta-learning
4
meta-learning learning-to-learn
4
learning-to-learn dramatic
4

Similar Publications

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.

View Article and Find Full Text PDF

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.

View Article and Find Full Text PDF

An enhanced Transformer framework with incremental learning for online stock price prediction.

PLoS One

January 2025

Harvard extension school, Harvard University, Boston, Massachusetts, United States of America.

To address the limitations of existing stock price prediction models in handling real-time data streams-such as poor scalability, declining predictive performance due to dynamic changes in data distribution, and difficulties in accurately forecasting non-stationary stock prices-this paper proposes an incremental learning-based enhanced Transformer framework (IL-ETransformer) for online stock price prediction. This method leverages a multi-head self-attention mechanism to deeply explore the complex temporal dependencies between stock prices and feature factors. Additionally, a continual normalization mechanism is employed to stabilize the data stream, enhancing the model's adaptability to dynamic changes.

View Article and Find Full Text PDF

Physics-Based Synthetic Data Model for Automated Segmentation in Catalysis Microscopy.

Microsc Microanal

January 2025

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.

In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!