Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2021.3071929 | DOI Listing |
The breakthroughs in communication distance and data rate have been eagerly anticipated by scientists in the area of underwater wireless optical communication (UWOC), which is seriously limited by the obvious aquatic attenuation in underwater channels. The high-power laser source and ultra-sensitive photodetector are straightforward in extending the UWOC distance. However, nonlinear impairments caused by bandwidth-limited high-power transmitters and sensitive receivers severely degrade the data rate of long-distance UWOC.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA.
RNA sequencing (RNA-seq) is the conventional genome-scale approach used to capture the expression levels of all detectable genes in a biological sample. This is now regularly used for population-based studies designed to identify genetic determinants of various diseases. Naturally, the accuracy of these tests should be verified and improved if possible.
View Article and Find Full Text PDFSci Rep
January 2025
Space Science Division, Korea Astronomy and Space Science Institute, Daejeon, 34055, Republic of Korea.
This paper reports the proton response function for solution-grown trans-stilbene scintillator from 1 to 25 MeVee and its application for unfolding neutron spectra of Cf-252 and AmBe sources. Low energy proton response was measured by the Time-of-Flight technique at the Korea Research Institute of Standards and Science. In contrast, high energy response was investigated using a 45 MeV proton beam at the Korea Institute of Radiological & Medical Sciences.
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
Med Image Comput Comput Assist Interv
October 2024
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA.
Delineating the normative developmental profile of functional connectome is important for both standardized assessment of individual growth and early detection of diseases. However, functional connectome has been mostly studied using functional connectivity (FC), where undirected connectivity strengths are estimated from statistical correlation of resting-state functional MRI (rs-fMRI) signals. To address this limitation, we applied regression dynamic causal modeling (rDCM) to delineate the developmental trajectories of effective connectivity (EC), the directed causal influence among neuronal populations, in whole-brain networks from infancy to adolescence (0-22 years old) based on high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human Connectome Project Development (HCP-D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!