Brominated flame retardants (BFRs), such as, 1,2,5,6-tetrabromocyclooctane (HBCD), 1,2-dibromo-4-(1,2-dibromopropyl)cyclohexane (TBECH), and 1 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE), have garnered increasing attention due to their potent biological effects. In the present study, the toxicity of HBCD, TBECH, and BTBPE in human vascular endothelial cells (ECs) was explored. The data showed that HBCD, TBECH, and BTBPE induced cytotoxicity, namely dose-dependent cell viability reduction, cell membrane permeability and apoptosis increase, migration, and lumen formation inhibition. Moreover, HBCD was found to be more toxic than BTBPE or TBECH. Exposure to HBCD, TBECH, and BTBPE led to the production of reactive oxygen species, mitochondrial superoxide generation, and mitochondrial membrane potential collapse, implying that reactive stress caused the cytotoxicity. The ATP content, glutathione content, superoxide dismutase, and MDA activities were reduced, indicating that mitochondrial dysfunction may be the key mechanisms responsible for apoptosis. The present study suggested that mitochondria are a new target of BFRs in ECs and further deepened our understanding of the developmental toxicity of BFRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.23163 | DOI Listing |
Environ Int
April 2023
State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China. Electronic address:
Brominated flame retardants (BFRs) are persistent organic pollutants. Many bacteria are able to debrominate BFRs, but the underlying mechanism is unclear. Herein, we discovered that reactive sulfur species (RSS), which have strong reductive activity and are commonly present in bacteria, might be one of the reasons leading to such ability.
View Article and Find Full Text PDFEnviron Toxicol
August 2021
Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Brominated flame retardants (BFRs), such as, 1,2,5,6-tetrabromocyclooctane (HBCD), 1,2-dibromo-4-(1,2-dibromopropyl)cyclohexane (TBECH), and 1 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE), have garnered increasing attention due to their potent biological effects. In the present study, the toxicity of HBCD, TBECH, and BTBPE in human vascular endothelial cells (ECs) was explored. The data showed that HBCD, TBECH, and BTBPE induced cytotoxicity, namely dose-dependent cell viability reduction, cell membrane permeability and apoptosis increase, migration, and lumen formation inhibition.
View Article and Find Full Text PDFSci Total Environ
October 2020
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
With the listing of the of cycloaliphatic brominated flame retardants (CBFR) hexabromocyclododecane (HBCD) as a persistent organic pollutant (POP) by the Stockholm Convention, much attention has been paid to the environmental behaviors and biological effects of HBCD, as well as its potential alternatives, such as 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (TBECH) and 1,2,5,6-tetrabromocyclooctane (TBCO). In this study, the neurotoxicity of HBCD, TBECH, and TBCO in human SH-SY5Y cells were compared. The results showed that HBCD, TBECH, and TBCO induced cytotoxicity, including dose-dependent cell viability decreases, cell membrane permeability increases, cytoskeleton development damage, and apoptosis induction, with the cytotoxicity in the order of HBCD > TBCO > TBECH.
View Article and Find Full Text PDFJ Hazard Mater
July 2019
State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China. Electronic address:
This study investigated the occurrence and fate of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), two chiral brominated flame retardants (BFRs) with sixteen different stereoisomers, in four Hong Kong wastewater treatment plants (WWTPs) featuring diverse treatment processes during a two-year sampling campaign. More effective HBCD removal was achieved via biodegradation as compared to sludge sorption, whereas both chemically enhanced primary treatment and secondary treatment yielded high TBECH elimination (>90%). α-HBCD (54-75%) predominated in all samples, and its proportions were increased in effluent as compared to influent and sludge.
View Article and Find Full Text PDFEnviron Sci Technol
August 2018
Department of Science and Environmental Studies , The Education University of Hong of Kong, Hong Kong SAR , China.
Stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) were determined in sediments and 30 marine species in a marine food web to investigate their trophic transfer. Lipid content was found to affect the bioaccumulation of ΣHBCD and ΣTBECH in these species. Elevated biomagnification of each diastereomer from prey species to marine mammals was observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!