Gut microbiota shape B cell in health and disease settings.

J Leukoc Biol

Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Published: August 2021

Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/JLB.1MR0321-660RDOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
health disease
12
disease settings
8
interaction gut
8
immune system
8
microbiota
6
gut
4
microbiota shape
4
shape cell
4
cell health
4

Similar Publications

A critical review on effects of artificial sweeteners on gut microbiota and gastrointestinal health.

J Sci Food Agric

January 2025

Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China.

Artificial sweeteners have emerged as popular alternatives to traditional sweeteners, driven by the growing concern over sugar consumption and its associated rise in obesity and metabolic disorders. Despite their widespread use, the safety and health implications of artificial sweeteners remain a topic of debate, with conflicting evidence contributing to uncertainty about their long-term effects. This review synthesizes current scientific evidence regarding the impact of artificial sweeteners on gut microbiota and gastrointestinal health.

View Article and Find Full Text PDF

: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. : Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD.

View Article and Find Full Text PDF

This study aimed to investigate the effects of heat-killed N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of , and .

View Article and Find Full Text PDF

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

Editorial: Insights in systems microbiology: 2022/2023.

Front Microbiol

January 2025

Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!