A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SeRenDIP-CE: sequence-based interface prediction for conformational epitopes. | LitMetric

SeRenDIP-CE: sequence-based interface prediction for conformational epitopes.

Bioinformatics

IBIVU - Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.

Published: October 2021

Motivation: Antibodies play an important role in clinical research and biotechnology, with their specificity determined by the interaction with the antigen's epitope region, as a special type of protein-protein interaction (PPI) interface. The ubiquitous availability of sequence data, allows us to predict epitopes from sequence in order to focus time-consuming wet-lab experiments toward the most promising epitope regions. Here, we extend our previously developed sequence-based predictors for homodimer and heterodimer PPI interfaces to predict epitope residues that have the potential to bind an antibody.

Results: We collected and curated a high quality epitope dataset from the SAbDab database. Our generic PPI heterodimer predictor obtained an AUC-ROC of 0.666 when evaluated on the epitope test set. We then trained a random forest model specifically on the epitope dataset, reaching AUC 0.694. Further training on the combined heterodimer and epitope datasets, improves our final predictor to AUC 0.703 on the epitope test set. This is better than the best state-of-the-art sequence-based epitope predictor BepiPred-2.0. On one solved antibody-antigen structure of the COVID19 virus spike receptor binding domain, our predictor reaches AUC 0.778. We added the SeRenDIP-CE Conformational Epitope predictors to our webserver, which is simple to use and only requires a single antigen sequence as input, which will help make the method immediately applicable in a wide range of biomedical and biomolecular research.

Availability And Implementation: Webserver, source code and datasets at www.ibi.vu.nl/programs/serendipwww/.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136078PMC
http://dx.doi.org/10.1093/bioinformatics/btab321DOI Listing

Publication Analysis

Top Keywords

epitope
10
epitope dataset
8
epitope test
8
test set
8
serendip-ce sequence-based
4
sequence-based interface
4
interface prediction
4
prediction conformational
4
conformational epitopes
4
epitopes motivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!