Treatment of epilepsy for people with Alzheimer's disease.

Cochrane Database Syst Rev

Department of Geriatric Neurology, Chinese PLA General Hospital, Beijing, China.

Published: May 2021

Background: Any type of seizure can be observed in Alzheimer's disease. Antiepileptic drugs seem to prevent the recurrence of epileptic seizures in most people with Alzheimer's disease. There are pharmacological and non-pharmacological treatments for epilepsy in people with Alzheimer's disease, however there are no current systematic reviews to evaluate the efficacy and tolerability of these treatments. This review aims to investigate these different modalities. This is an updated version of the Cochrane Review previously published in 2018.

Objectives: To assess the efficacy and tolerability of pharmacological or non-pharmacological interventions for the treatment of epilepsy in people with Alzheimer's disease (including sporadic Alzheimer's disease and dominantly inherited Alzheimer's disease).

Search Methods: For the latest update, on 3 August 2020 we searched the Cochrane Register of Studies (CRS Web) and MEDLINE (Ovid, 1946 to 31 July 2020). CRS Web includes randomized or quasi-randomized controlled trials from PubMed, EMBASE, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform (ICTRP), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Specialized Registers of Cochrane Review Groups, including Cochrane Epilepsy. In an effort to identify further published, unpublished and ongoing trials, we searched ongoing trials registers, reference lists and relevant conference proceedings; we also contacted trial authors and pharmaceutical companies.

Selection Criteria: We included randomized and quasi-randomized controlled trials investigating treatment for epilepsy in people with Alzheimer's disease, with the primary outcomes of proportion of participants with seizure freedom and proportion of participants experiencing adverse events.

Data Collection And Analysis: Two review authors independently screened the titles and abstracts of identified records, selected studies for inclusion, extracted data, cross-checked the data for accuracy and assessed the methodological quality. We performed no meta-analyses due to there being limited available data.

Main Results: We included one randomized controlled trial (RCT) on pharmacological interventions; the trial included 95 participants. No studies were found for non-pharmacological interventions. Concerning the proportion of participants with seizure freedom, no significant differences were found for the comparisons of levetiracetam versus lamotrigine (RR) 1.20, 95% CI 0.53 to 2.71; 67 participants; very low-certainty evidence), levetiracetam versus phenobarbital (RR 1.01, 95% CI 0.47 to 2.19; 66 participants; very low-certainty evidence), or lamotrigine versus phenobarbital (RR 0.84, 95% CI 0.35 to 2.02; 57 participants; very low-certainty evidence). It seemed that levetiracetam could improve cognition and lamotrigine could relieve depression, while phenobarbital and lamotrigine could worsen cognition, and levetiracetam and phenobarbital could worsen mood. The risk of bias relating to allocation, blinding and selective reporting was unclear. We judged the certainty of the evidence for all outcomes to be very low.

Authors' Conclusions: This review does not provide sufficient evidence to support levetiracetam, phenobarbital or lamotrigine for the treatment of epilepsy in people with Alzheimer's disease. Regarding efficacy and tolerability, no significant differences were found between levetiracetam, phenobarbital and lamotrigine. Large RCTs with a double-blind, parallel-group design are required to determine the efficacy and tolerability of treatment for epilepsy in people with Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111487PMC
http://dx.doi.org/10.1002/14651858.CD011922.pub4DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
36
people alzheimer's
28
epilepsy people
24
treatment epilepsy
20
efficacy tolerability
16
controlled trials
12
proportion participants
12
participants low-certainty
12
low-certainty evidence
12
phenobarbital lamotrigine
12

Similar Publications

Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).

Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

Using Machine Learning to Design a FeMOF Bidirectional Regulator for Electrochemiluminescence Sensing of Tau Protein.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

The single-luminophore-based ratiometric electrochemiluminescence (ECL) sensor coupling bidirectional regulator has become a research hotspot in the detection field because of its simplicity and accuracy. However, the limited bidirectional regulator hinders its further development. In this study, by leveraging the robust predictive capabilities of machine learning, we prepared an Fe-based metal-organic framework (FeMOF) as a bidirectional regulator for modulating the dual-emission ECL signals of a single luminophore for the first time.

View Article and Find Full Text PDF

Redirecting Research to Alzheimer's Disease.

Cent Nerv Syst Agents Med Chem

January 2025

International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!