Aziz Sancar, Nobel Prize winning Turkish scientist, made several discoveries which had a major impact on molecular sciences, particularly disciplines that focus on carcinogenesis and cancer treatment, including molecular pathology. Cloning the photolyase gene, which was the initial step of his work on DNA repair mechanisms, discovery of the "Maxicell" method, explanation of the mechanism of nucleotide excision repair and transcription-coupled repair, discovery of "molecular matchmakers", and mapping human excision repair genes at single nucleotide resolution constitute his major research topics. Moreover, Sancar discovered the cryptochromes, the clock genes in humans, in 1998, and this discovery led to substantial progress in the understanding of the circadian clock and the introduction of the concept of "chrono-chemoterapy" for more effective therapy in cancer patients. This review focuses on Aziz Sancar's scientific studies and their reflections on molecular pathology of neoplastic diseases. While providing a new perspective for researchers working in the field of pathology and molecular pathology, this review is also an evidence of how basic sciences and clinical sciences complete each other.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512686 | PMC |
http://dx.doi.org/10.5146/tjpath.2020.01504 | DOI Listing |
Breast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFGenome Med
December 2024
European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD and MSA Rare Disease, Working Group, Paris, France.
Background: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) developed standardized variant curation guidelines for Mendelian disorders. Although these guidelines have been widely adopted, they are not gene- or disease-specific. To mitigate classification discrepancies, the Clinical Genome Resource FBN1 variant curation expert panel (VCEP) was established in 2018 to develop adaptations to the ACMG/AMP criteria for FBN1 in association with Marfan syndrome.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity.
View Article and Find Full Text PDFMob DNA
December 2024
CNRS, Institute for Research Saint Louis, Université Paris Cité (IRSL), Inserm, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!