Investigating the earliest stages of crystallization requires the transmission electron microscope (TEM) and is particularly challenging for materials which can be affected by the electron beam. Typically, when imaging at magnifications high enough to observe local crystallinity, the electron beam's current density must be high to produce adequate image contrast. Yet, minimizing the electron dose is necessary to reduce the changes caused by the beam. With the advent of a sensitive, high-speed, direct-detection camera for a TEM that is corrected for spherical aberration, it is possible to probe the early stages of crystallization at the atomic scale. High-quality images with low contrast can now be analyzed using new computing methods. In the present paper, this approach is illustrated for crystallization in a Ge2Sb2Te5 (GST-225) phase-change material which can undergo particularly rapid phase transformations and is sensitive to the electron beam. A thin (20 nm) film of GST-225 has been directly imaged in the TEM and the low-dose images processed using Python scripting to extract details of the nanoscale nuclei. Quantitative analysis of the processed images in a video sequence also allows the growth of such nuclei to be followed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927621000441 | DOI Listing |
ACS Nano
January 2025
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.
The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.
View Article and Find Full Text PDFBiophys Chem
January 2025
La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:
The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!