Motivated by in silico predictions that Co, Rh, and Ir dopants would lead to low overpotentials to improve OER activity of Ni-based hydroxides, we report here an experimental confirmation on the altered OER activities for a series of metals (Mo, W, Fe, Ru, Co, Rh, Ir) doped into γ-NiOOH. The in situ electrical conductivity for metal doped γ-NiOOH correlates well with the trend in enhanced OER activities. Density functional theory (DFT) calculations were used to rationalize the in situ conductivity of the key intermediate states of metal doped γ-NiOOH during OER. The simultaneous increase of OER activity with intermediate conductivity was later rationalized by their intrinsic connections to the double exchange (DE) interaction between adjacent metal ions with various d orbital occupancies, serving as an indicator for the key metal-oxo radical character, and an effective descriptor for the mechanistic evaluation and theoretical guidance in design and screening of efficient OER catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202101906DOI Listing

Publication Analysis

Top Keywords

doped γ-niooh
12
situ conductivity
8
effective descriptor
8
oer activity
8
oer activities
8
metal doped
8
oer
6
double-exchange-induced situ
4
conductivity
4
conductivity nickel-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!