3-Indoleacetic acid (IAA) is a phytohormone that promotes plant root growth, improving the use of nutrients and crop yield and it is been reported that bacteria of the genus Bacillus are capable of producing this phytohormone under various growth conditions. Considering this metabolic capability, in this work, Bacillus subtilis was cultivated in five different carbon sources: glucose, acetate, propionate, citrate and glycerol; and l-tryptophan (Trp) was used as an inducer for the IAA production. Based on the experimental results it was observed that the highest growth rate was achieved using glucose as a carbon source (μ = 0.12 h-1) and the lowest value was for citrate (μ = 0.08 h-1). On the other hand, the highest IAA production was obtained using propionate Yp/s = 0.975 (gIAA gTrp-1) and the lowest was when glucose was the substrate Yp/s = 0.803 (gIAA gTrp-1). In order to explore the metabolism and understand these differences, the experimental data was used to calculate the flux distribution using the genomic-scale metabolic model of Bacillus subtilis. Performing a comparative analysis it is observed that the fluxes towards precursors increase when propionate is the carbon source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1mo00039j | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Physics, University of Siegen, Siegen, Germany.
The topic of data storage, traceability, and data use and reuse in the years following experiments is becoming an important topic in Europe and across the world. Many scientific communities are striving to create open data by the FAIR principles. This is a requirement from the European Commission for EU-funded projects and experiments at EU-funded research infrastructures (RIs) and from many national funding agencies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, USA.
is an important bacterial pathogen implicated in infections such as mastitis, metritis, pneumonia, and liver abscesses in both domestic and wild animals, as well as endocarditis and prosthetic joint infections in humans. Understanding the genomic and metabolic features that enable to colonize different anatomical sites within a host and its inter-kingdom transmission and survival is important for the effective control of this pathogen. We employed whole-genome sequencing, phenotype microarrays, and antimicrobial susceptibility testing to identify genomic, metabolic and phenotypic features, and antimicrobial resistance (AMR) genes in recovered from different livestock, companion, and wildlife animals.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden.
Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!