Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612075 | PMC |
http://dx.doi.org/10.1038/s42255-021-00386-8 | DOI Listing |
Nature
November 2024
Gladstone Institutes, San Francisco, CA, USA.
Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood.
View Article and Find Full Text PDFCancer Res Commun
May 2024
Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
Unlabelled: Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDC) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive.
View Article and Find Full Text PDFChronic inflammation and tissue fibrosis are common stress responses that worsen organ function, yet the molecular mechanisms governing their crosstalk are poorly understood. In diseased organs, stress-induced changes in gene expression fuel maladaptive cell state transitions and pathological interaction between diverse cellular compartments. Although chronic fibroblast activation worsens dysfunction of lung, liver, kidney, and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating the transcriptional activation of fibroblasts are not well understood.
View Article and Find Full Text PDFNat Commun
June 2022
Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Transposable elements (TEs) through evolutionary exaptation have become an integral part of the human genome, offering ample regulatory sequences and shaping chromatin 3D architecture. While the functional impacts of TE-derived sequences on early embryogenesis have been recognized, their roles in malignancy are only starting to emerge. Here we show that many TEs, especially the pluripotency-related human endogenous retrovirus H (HERVH), are abnormally activated in colorectal cancer (CRC) samples.
View Article and Find Full Text PDFActa Pharm Sin B
May 2022
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
Disturbance of macrophage-associated lipid metabolism plays a key role in atherosclerosis. Crosstalk between autophagy deficiency and inflammation response in foam cells (FCs) through epigenetic regulation is still poorly understood. Here, we demonstrate that in macrophages, oxidized low-density lipoprotein (ox-LDL) leads to abnormal crosstalk between autophagy and inflammation, thereby causing aberrant lipid metabolism mediated through a dysfunctional transcription factor EB (TFEB)-P300-bromodomain-containing protein 4 (BRD4) axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!