Automatic wavelet-based 3D nuclei segmentation and analysis for multicellular embryo quantification.

Sci Rep

Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Published: May 2021

Identification of individual cells in tissues, organs, and in various developing systems is a well-studied problem because it is an essential part of objectively analyzing quantitative images in numerous biological contexts. We developed a size-dependent wavelet-based segmentation method that provides robust segmentation without any preprocessing, filtering or fine-tuning steps, and is robust to the signal-to-noise ratio. The wavelet-based method achieves robust segmentation results with respect to True Positive rate, Precision, and segmentation accuracy compared with other commonly used methods. We applied the segmentation program to zebrafish embryonic development IN TOTO for nuclei segmentation, image registration, and nuclei shape analysis. These new approaches to segmentation provide a means to carry out quantitative patterning analysis with single-cell precision throughout three dimensional tissues and embryos and they have a high tolerance for non-uniform and noisy image data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110989PMC
http://dx.doi.org/10.1038/s41598-021-88966-2DOI Listing

Publication Analysis

Top Keywords

segmentation
8
nuclei segmentation
8
robust segmentation
8
automatic wavelet-based
4
wavelet-based nuclei
4
segmentation analysis
4
analysis multicellular
4
multicellular embryo
4
embryo quantification
4
quantification identification
4

Similar Publications

Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.

View Article and Find Full Text PDF

Epicardial Adipose Tissue from Computed Tomography: a Missing Link in Premature Coronary Artery Disease?

Eur Heart J Cardiovasc Imaging

January 2025

Sorbonne Université, unité d'imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, ACTION Group, Paris, France.

Purpose: Epicardial adipose tissue (EAT) could contribute to the specific atherosclerosis profile observed in premature coronary artery disease (pCAD) characterized by accelerated plaque burden (calcified and non-calcified), high risk plaque features (HRP) and ischemic recurrence. Our aims were to describe EAT volume and density in pCAD compared to asymptomatic individuals matched on CV risk factors and to study their relationship with coronary plaque severity extension and vulnerability.

Materials And Methods: 208 patients who underwent coronary computed tomography angiography (CCTA) were analyzed.

View Article and Find Full Text PDF

In populations of small effective size (N), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes.

View Article and Find Full Text PDF

Inheritance of Imaging Parameters of Arrhythmic Risk in Mitral Valve Prolapse: A Pedigree Study.

Circ Cardiovasc Imaging

January 2025

Division of Cardiology, Department of Medicine, University of California, San Francisco (L.C., S.D., D.B., J.J.T., Q.F., L.T., A.H.R., R.J., S.H., H.H.H., Z.H.T., N.B.S., F.N.D.).

Background: A subset of patients with mitral valve prolapse (MVP), a highly heritable condition, experience sudden cardiac arrest (SCA) or sudden cardiac death (SCD). However, the inheritance of phenotypic imaging features of arrhythmic MVP remains unknown.

Methods: We recruited 23 MVP probands, including 9 with SCA/SCD and 14 with frequent/complex ventricular ectopy.

View Article and Find Full Text PDF

In this study, the kidneys of ground squirrels (hibernated and nonhibernated), rabbits, and rats were examined macro and microanatomically. Kidney morphology was investigated by stereo microscopy, light microscopy, and scanning electron microscopy. Triple and immunohistochemical staining were performed for light microscopic examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!