The circadian clock ensures successful DNA replication in cyanobacteria.

Proc Natl Acad Sci U S A

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637;

Published: May 2021

Disruption of circadian rhythms causes decreased health and fitness, and evidence from multiple organisms links clock disruption to dysregulation of the cell cycle. However, the function of circadian regulation for the essential process of DNA replication remains elusive. Here, we demonstrate that in the cyanobacterium , a model organism with the simplest known circadian oscillator, the clock generates rhythms in DNA replication to minimize the number of open replication forks near dusk that would have to complete after sunset. Metabolic rhythms generated by the clock ensure that resources are available early at night to support any remaining replication forks. Combining mathematical modeling and experiments, we show that metabolic defects caused by clock-environment misalignment result in premature replisome disassembly and replicative abortion in the dark, leaving cells with incomplete chromosomes that persist through the night. Our study thus demonstrates that a major function of this ancient clock in cyanobacteria is to ensure successful completion of genome replication in a cycling environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157973PMC
http://dx.doi.org/10.1073/pnas.2022516118DOI Listing

Publication Analysis

Top Keywords

dna replication
12
replication forks
8
replication
6
circadian
4
circadian clock
4
clock ensures
4
ensures successful
4
successful dna
4
replication cyanobacteria
4
cyanobacteria disruption
4

Similar Publications

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus.

J Med Virol

January 2025

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.

View Article and Find Full Text PDF

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics.

View Article and Find Full Text PDF

Unlabelled: Chronic Hepatitis B (CHB) remains a major public health problem, leading to various complications such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. The existing diagnostic markers for Hepatitis B virus (HBV) are limited in distinguishing different CHB phases and intra-hepatic viral replication activity. In the past few years, several non-invasive potential blood markers that reflect viral intra-hepatic replicative state more accurately have been in progress and are gaining importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!