Reductionist strategies aim to understand the mechanisms of complex systems by studying individual parts and their interactions. In this review, we discuss how reductionist approaches have shed light on the structure, function, and production of a complex biomaterial - hagfish defensive slime. Hagfish slime is an extremely dilute hydrogel-like material composed of seawater, mucus, and silk-like proteins that can deploy rapidly. Despite being composed almost entirely of water, hagfish slime has remarkable physical properties, including high strength and toughness. While hagfish slime has a promising future in biomimetics, including the development of eco-friendly high-performance fibers, recreating hagfish slime in the lab has been a difficult challenge. Over the past two decades, reductionist experiments have provided a wealth of information about the individual components of hagfish slime. However, a reductionist approach provides a limited understanding because hagfish defensive slime, like most biological phenomena, is more than just the sum of its parts. We end by providing some thoughts about how the knowledge generated in the last few decades might be synthesized into a working model that can explain hagfish slime structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2021.110610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!