Epithelial ovarian cancer, the most lethal gynecological malignancy, is diagnosed at advanced stage, recurs and displays chemoresistance to standard chemotherapeutic regimen of taxane/platinum drugs. Despite development of recent therapeutic approaches including poly-ADP ribose polymerase inhibitors, this fatal disease is diagnosed at advanced stage and heralds strategies for early detection and improved treatment. Recent literature suggests that high propensity of ovarian cancer cells to consume and metabolize glucose via glycolysis even in the presence of oxygen (the 'Warburg effect') can significantly contribute to disease progression and chemoresistance and hence, it has been exploited as novel drug target. This review focuses on the molecular cues of aberrant glycolysis as drivers of chemo-resistance and aggressiveness of recurrent ovarian cancer. Furthermore, we discuss the status quo of small molecule inhibition of aerobic glycolysis and significance of metabolic coupling between cancer cells and tumor microenvironment as novel therapeutic interventions against this lethal pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2021.188563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!