A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural Adaptive Self-Triggered Control for Uncertain Nonlinear Systems With Input Hysteresis. | LitMetric

AI Article Synopsis

  • The text discusses a method for controlling uncertain nonlinear systems that experience input hysteresis using neural networks and adaptive techniques.
  • The proposed adaptive self-triggered control system determines when to trigger next based on current data, simplifying implementation compared to traditional event-triggered methods.
  • The new control approach effectively compensates for hysteresis, keeps tracking errors within certain limits, and ensures all signals in the system remain bounded, with examples provided to demonstrate its effectiveness.

Article Abstract

The issue of neural adaptive self-triggered tracking control for uncertain nonlinear systems with input hysteresis is considered. Combining radial basis function neural networks (RBFNNs) and adaptive backstepping technique, an adaptive self-triggered tracking control approach is developed, where the next trigger instant is determined by the current information. Compared with the event-triggered control mechanism, its biggest advantage is that it does not need to continuously monitor the trigger condition of the system, which is convenient for physical realization. By the proposed controller, the hysteresis's effect can be compensated effectively and the tracking error can be bounded by an explicit function of design parameters. Simultaneously, all other signals in the closed-loop system can be remaining bounded. Finally, two examples are presented to verify the effectiveness of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3072784DOI Listing

Publication Analysis

Top Keywords

adaptive self-triggered
12
neural adaptive
8
control uncertain
8
uncertain nonlinear
8
nonlinear systems
8
systems input
8
input hysteresis
8
self-triggered tracking
8
tracking control
8
control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!