Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The issue of neural adaptive self-triggered tracking control for uncertain nonlinear systems with input hysteresis is considered. Combining radial basis function neural networks (RBFNNs) and adaptive backstepping technique, an adaptive self-triggered tracking control approach is developed, where the next trigger instant is determined by the current information. Compared with the event-triggered control mechanism, its biggest advantage is that it does not need to continuously monitor the trigger condition of the system, which is convenient for physical realization. By the proposed controller, the hysteresis's effect can be compensated effectively and the tracking error can be bounded by an explicit function of design parameters. Simultaneously, all other signals in the closed-loop system can be remaining bounded. Finally, two examples are presented to verify the effectiveness of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3072784 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!