KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate knockout zebrafish. homozygous mutants showed global dysregulation of gene expression and increased transcription of , which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of -associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01677063.2021.1892095 | DOI Listing |
J Appl Genet
January 2025
Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran.
Perrault syndrome (PS) is an extremely rare autosomal recessive condition characterized primarily by bilateral sensorineural hearing loss in both genders and primary or secondary ovarian failure in females. Neurological features such as cerebral ataxia, peripheral neuropathy, epilepsy, and intellectual disability are frequent manifestations of PS. To date, six genes have been reported to cause PS, and nearly 100 families have been identified worldwide with this syndrome.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
Congenital thrombotic thrombocytopenic purpura (cTTP) is a thrombotic microangiopathy (TMA) characterized by severe hereditary ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs 13) deficiency caused by mutations. This rare autosomal recessive genetic disorder is often misdiagnosed as immune thrombocytopenia (ITP) or hemolytic uremic syndrome (HUS). Here, we report a 21-year-old male cTTP patient with a compound heterozygous mutation.
View Article and Find Full Text PDFCureus
December 2024
Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, MYS.
Haemoglobin (Hb) AE Bart's disease is a rare form of thalassemia that results from the co-inheritance of Hb E and alpha thalassemia, typically with Hb H disease. The clinical severity can vary depending on the underlying genetic mutations, particularly in the presence of Hb Constant Spring (Hb CS), which is a highly unstable form of alpha thalassemia. Understanding the genetic basis and haematological profiles of Hb AE Bart's disease is crucial for proper diagnosis and management.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!