The family of group IV-VI monochalcogenides has an atomically puckered layered structure, and their atomic bond configuration suggests the possibility for the realization of various polymorphs. Here, we report the synthesis of the first hexagonal polymorph from the family of group IV-VI monochalcogenides, which is conventionally orthorhombic. Recently predicted four-atomic-thick hexagonal GeSe, so-called γ-GeSe, is synthesized and clearly identified by complementary structural characterizations, including elemental analysis, electron diffraction, high-resolution transmission electron microscopy imaging, and polarized Raman spectroscopy. The electrical and optical measurements indicate that synthesized γ-GeSe exhibits high electrical conductivity of 3 × 10 S/m, which is comparable to those of other two-dimensional layered semimetallic crystals. Moreover, γ-GeSe can be directly grown on h-BN substrates, demonstrating a bottom-up approach for constructing vertical van der Waals heterostructures incorporating γ-GeSe. The newly identified crystal symmetry of γ-GeSe warrants further studies on various physical properties of γ-GeSe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c00714 | DOI Listing |
Conserv Biol
November 2024
Geography Department, Humboldt-University Berlin, Berlin, Germany.
J Phys Condens Matter
November 2024
School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, People's Republic of China.
Over the past few decades, semiconductor materials of the group IV-VI monochalcogenides have attracted considerable interest from researchers due to their rich structural characteristics and excellent physical properties. Among them, GeS, GeSe, SnS, and SnSe crystallize in an orthorhombic structure () at ambient conditions. It has been reported that GeS, SnS, and SnSe transform into a higher symmetry orthorhombic structure () at high pressure, while the phase transformation route of GeSe at high pressure remains controversial.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Soil and Water Management Research Directorate, Sekota Dry-Land Agricultural Research Center, P.O. Box 62, Sekota, Ethiopia.
Watershed characterization is essential for sustainable watershed management and effective resource utilization, particularly in assessing changes resulting from interventions. This study investigates the biophysical and socio-economic conditions of the Agewmariam watershed, aiming to develop land capability and suitability maps while identifying viable management options. Biophysical data, including land slope, soil properties, erosion severity, stoniness/rockiness cover, and vegetation cover, were collected through field surveys and analyzed using overlay analysis in ArcGIS.
View Article and Find Full Text PDFPathol Res Pract
November 2024
Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Division of Pediatric Surgery, Department of Surgery, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea. Electronic address:
Acute liver injury serves as a crucial marker for detecting liver damage due to toxic, viral, metabolic, and autoimmune exposures. Due to the response to adverse external stimuli and various cellular homeostasis, Endoplasmic reticulum stress (ERS), Oxidative stress, and Inflammation have great potential for treating liver injury. Trans-chalcones (TC) is a polyphenolic compound derived from a natural plant with anti-oxidative and anti-inflammatory abilities.
View Article and Find Full Text PDFSkin Appendage Disord
October 2024
Department of Dermatology, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!